Skip to main content

Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant

Abstract

Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17β-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 μL of saline (control group) or ROFA solution (250 μg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aebi H (1984) Catalase in vitro Methods. Enzymol 105:121–126

    CAS  Article  Google Scholar 

  2. Baldissera FG et al (2018) Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: a relation with oxidative stress markers. Cell Stress Chaperones 23:1185–1192. https://doi.org/10.1007/s12192-018-0924-z

    CAS  Article  Google Scholar 

  3. Bansal S, Chopra K (2014) Distinct role of estrogen receptor-alpha and beta on postmenopausal diabetes-induced vascular dysfunction. Gen Comp Endocrinol 206:51–59. https://doi.org/10.1016/j.ygcen.2014.06.013

    CAS  Article  Google Scholar 

  4. Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K (2013) 17-beta Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 170:779–795. https://doi.org/10.1111/bph.12290

    CAS  Article  Google Scholar 

  5. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6:e19194. https://doi.org/10.1371/journal.pone.0019194

    CAS  Article  Google Scholar 

  6. Bruxel MA et al (2019) Chronic whole-body heat treatment relieves atherosclerotic lesions, cardiovascular and metabolic abnormalities, and enhances survival time restoring the anti-inflammatory and anti-senescent heat shock response in mice. Biochimie 156:33–46. https://doi.org/10.1016/j.biochi.2018.09.011

    CAS  Article  Google Scholar 

  7. Buege JA, Aust SD (1978) Microsomal lipid peroxidation Methods. Enzymol 52:302–310

    CAS  Article  Google Scholar 

  8. Chae SY, Lee M, Kim SW, Bae YH (2004) Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials 25:843–850

    CAS  Article  Google Scholar 

  9. Chang Y, Chen TL, Sheu JR, Chen RM (2005) Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 204:27–35. https://doi.org/10.1016/j.taap.2004.08.011

    CAS  Article  Google Scholar 

  10. Costa Beber LC et al (2020) The association of subchronic exposure to low concentration of PM2.5 and high-fat diet potentiates glucose intolerance development, by impairing adipose tissue antioxidant defense and eHSP72 levels. Environ Sci Pollut Res Int 27:32006–32016. https://doi.org/10.1007/s11356-020-09581-8

    CAS  Article  Google Scholar 

  11. Costa-Beber LC, Hirsch GE, Heck TG, Ludwig MS (2020) Chaperone duality: the role of extracellular and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis. Arch Physiol Biochem:1–8. https://doi.org/10.1080/13813455.2020.1745850

  12. Cui A et al (2019) VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol Lett 302:60–74. https://doi.org/10.1016/j.toxlet.2018.11.002

    CAS  Article  Google Scholar 

  13. Dai J, Sun C, Yao Z, Chen W, Yu L, Long M (2016) Exposure to concentrated ambient fine particulate matter disrupts vascular endothelial cell barrier function via the IL-6/HIF-1alpha signaling pathway. FEBS Open Bio 6:720–728. https://doi.org/10.1002/2211-5463.12077

    CAS  Article  Google Scholar 

  14. Damiani RM, Piva MO, Petry MR, Saldiva PH, Tavares Duarte de Oliveira A, Rhoden CR (2012) Is cardiac tissue more susceptible than lung to oxidative effects induced by chronic nasotropic instillation of residual oil fly ash (ROFA)? Toxicol Mech Methods 22:533–539. https://doi.org/10.3109/15376516.2012.692109

    CAS  Article  Google Scholar 

  15. Davel AP et al (2012) Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 295:39–46. https://doi.org/10.1016/j.tox.2012.02.004

    CAS  Article  Google Scholar 

  16. De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246. https://doi.org/10.1097/SHK.0b013e3182a185ab

    CAS  Article  Google Scholar 

  17. de Oliveira-Fonoff AM et al (2017) The role of air pollution in myocardial remodeling. PLoS One 12:e0176084. https://doi.org/10.1371/journal.pone.0176084

    CAS  Article  Google Scholar 

  18. EPA (2010) https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/termsandacronyms/search.do?search=&term=chronic&matchCriteria=Contains&checkedAcronym=true&checkedTerm=true&hasDefinitions=false%23formTop. Accessed Jan 2021

  19. Furuyama A, Kanno S, Kobayashi T, Hirano S (2009) Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol 83:429–437. https://doi.org/10.1007/s00204-008-0371-1

    CAS  Article  Google Scholar 

  20. Galovic R, Flegar-Mestric Z, Vidjak V, Matokanovic M, Barisic K (2016) Heat shock protein 70 and antibodies to heat shock protein 60 are associated with cerebrovascular atherosclerosis. Clin Biochem 49:66–69. https://doi.org/10.1016/j.clinbiochem.2015.10.006

    CAS  Article  Google Scholar 

  21. Ghio AJ, Silbajoris R, Carson JL, Samet JM (2002a) Biologic effects of oil fly ash. Environ Health Perspect 110(Suppl 1):89–94

    Article  Google Scholar 

  22. Ghio AJ, Suliman HB, Carter JD, Abushamaa AM, Folz RJ (2002b) Overexpression of extracellular superoxide dismutase decreases lung injury after exposure to oil fly ash. Am J Physiol Lung Cell Mol Physiol 283:L211–L218. https://doi.org/10.1152/ajplung.00409.2001

    CAS  Article  Google Scholar 

  23. Gil Lorenzo AF, Bocanegra V, Benardon ME, Cacciamani V, Valles PG (2014) Hsp70 regulation on Nox4/p22phox and cytoskeletal integrity as an effect of losartan in vascular smooth muscle cells. Cell Stress Chaperones 19:115–134. https://doi.org/10.1007/s12192-013-0439-6

    CAS  Article  Google Scholar 

  24. Gimbrone MA Jr, Garcia-Cardena G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    CAS  Article  Google Scholar 

  25. Goettems-Fiorin PB et al (2016) Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis. J Physiol Biochem 72:643–656. https://doi.org/10.1007/s13105-016-0503-7

    CAS  Article  Google Scholar 

  26. Goettems-Fiorin PB et al (2019) Ovariectomy predisposes female rats to fine particulate matter exposure’s effects by altering metabolic, oxidative, pro-inflammatory, and heat-shock protein levels. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-019-05383-9

  27. Heck TG et al (2017) Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 22:271–291. https://doi.org/10.1007/s12192-017-0771-3

    CAS  Article  Google Scholar 

  28. Hemmingsen JG et al (2009) Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice. Toxicology 264:61–68. https://doi.org/10.1016/j.tox.2009.07.012

  29. Hou Y, Wei H, Luo Y, Liu G (2010) Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol 45:323–330. https://doi.org/10.1016/j.exger.2009.10.006

    CAS  Article  Google Scholar 

  30. Kampfrath T et al (2011) Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108:716–726. https://doi.org/10.1161/CIRCRESAHA.110.237560

    CAS  Article  Google Scholar 

  31. Kostrycki IM et al (2019) Effects of high-fat diet on eHSP72 and extra-to-intracellular HSP70 levels in mice submitted to exercise under exposure to fine particulate matter. J Diabetes Res 2019:4858740. https://doi.org/10.1155/2019/4858740

    CAS  Article  Google Scholar 

  32. Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R, Homem de Bittencourt PI Jr (2015) The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat Inflamm 2015:249205. https://doi.org/10.1155/2015/249205

    CAS  Article  Google Scholar 

  33. Lima SMRRB-KA, Flues K, Paulin J, Monte O, Irigoyen MC, Angelis K (2007) Efeitos da suplementação do 17β-estradiol no dano oxidativo cardíaco de ratas submetidas à privação dos hormônios ovarianos. Rev Brasil Ginecol 29:27–33

    Google Scholar 

  34. Lima-Mendoza LA et al (2014) Vascular damage in obese female rats with hypoestrogenism. J Physiol Biochem 70:81–91. https://doi.org/10.1007/s13105-013-0283-2

    CAS  Article  Google Scholar 

  35. Lissarassa YPS et al (2020) Chronic heat treatment positively impacts metabolic profile of ovariectomized rats: association with heat shock response pathways. Cell Stress Chaperones. https://doi.org/10.1007/s12192-020-01087-z

  36. Liu, Gou, Zhang, Zuo, Zhang, Liu, Yao (2014) Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall. Redox Biol 3:88–99. https://doi.org/10.1016/j.redox.2014.11.001

    CAS  Article  Google Scholar 

  37. Ludwig MS, Minguetti-Camara VC, Heck TG, Scomazzon SP, Nunes PR, Bazotte RB, Homem de Bittencourt PI Jr (2014) Short-term but not long-term hypoglycaemia enhances plasma levels and hepatic expression of HSP72 in insulin-treated rats: an effect associated with increased IL-6 levels but not with IL-10 or TNF-alpha. Mol Cell Biochem 397:97–107. https://doi.org/10.1007/s11010-014-2176-2

    CAS  Article  Google Scholar 

  38. Machi JF et al (2016) Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress. Clin Interv Aging 11:341–350. https://doi.org/10.2147/CIA.S88441

    CAS  Article  Google Scholar 

  39. Mai AS et al (2017) Exercise training under exposure to low levels of fine particulate matter: effects on heart oxidative stress and extra-to-intracellular HSP70 ratio. Oxidative Med Cell Longev 2017:9067875. https://doi.org/10.1155/2017/9067875

    CAS  Article  Google Scholar 

  40. Marchini T et al (2016) Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Res Cardiol 111:44. https://doi.org/10.1007/s00395-016-0562-5

    CAS  Article  Google Scholar 

  41. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  Article  Google Scholar 

  42. Medeiros N Jr et al (2004) Acute pulmonary and hematological effects of two types of particle surrogates are influenced by their elemental composition. Environ Res 95:62–70. https://doi.org/10.1016/j.envres.2003.07.007

    CAS  Article  Google Scholar 

  43. Medina-Navarro R, Lifshitz A, Wacher N, Hicks JJ (1997) Changes in human serum antioxidant capacity and peroxidation after four months of exposure to air pollutants. Arch Med Res 28:205–208

    CAS  Google Scholar 

  44. Min W, Fang P, Huang G, Shi M, Zhang Z (2018) The decline of whole-body glucose metabolism in ovariectomized rats. Exp Gerontol 113:106–112. https://doi.org/10.1016/j.exger.2018.09.027

    CAS  Article  Google Scholar 

  45. Minta W et al (2018) Estrogen deprivation aggravates cardiometabolic dysfunction in obese-insulin resistant rats through the impairment of cardiac mitochondrial dynamics. Exp Gerontol 103:107–114. https://doi.org/10.1016/j.exger.2018.01.006

    CAS  Article  Google Scholar 

  46. Miragem AA, Homem de Bittencourt PI Jr (2017) Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 23:600–628. https://doi.org/10.1093/humupd/dmx020

    CAS  Article  Google Scholar 

  47. Miragem AAL, S M, Heck TG, Baldissera FG, Santos AB, Frizzo MN, Bittencourt PIH Jr (2015) Estrogen deprivation does not affect vascular heat shock response in female rats: a comparison with oxidative stress markers. Mol Cell Biochem 407:239–249. https://doi.org/10.1007/s11010-015-2472-5

  48. Newsholme P, de Bittencourt PI Jr (2014) The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Curr Opin Clin Nutri Metabol Care 17:295–305. https://doi.org/10.1097/MCO.0000000000000077

    CAS  Article  Google Scholar 

  49. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol 70:230–251. https://doi.org/10.1016/j.jacc.2017.05.043

    CAS  Article  Google Scholar 

  50. Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262. https://doi.org/10.1016/j.bbapap.2009.11.004

    CAS  Article  Google Scholar 

  51. Petisco AC et al (2017) High prevalence of subclinical atherosclerosis in Brazilian postmenopausal women with low and intermediate risk by Framingham score. Int J Card Imaging 33:401–410. https://doi.org/10.1007/s10554-016-1002-1

    Article  Google Scholar 

  52. Proctor SD, Dreher KL, Kelly SE, Russell JC (2006) Hypersensitivity of prediabetic JCR:LA-cp rats to fine airborne combustion particle-induced direct and noradrenergic-mediated vascular contraction. Toxicol Sci 90:385–391. https://doi.org/10.1093/toxsci/kfj100

    CAS  Article  Google Scholar 

  53. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21:379–404. https://doi.org/10.1007/s12192-016-0676-6

    CAS  Article  Google Scholar 

  54. Rangel-Zuniga OA et al (2017) Differential menopause-versus aging-induced changes in oxidative stress and circadian rhythm gene markers. Mech Ageing Dev 164:41–48. https://doi.org/10.1016/j.mad.2017.04.002

    CAS  Article  Google Scholar 

  55. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA (2005) Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood) 230:777–784

    CAS  Article  Google Scholar 

  56. Sancini G et al (2014) Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One 9:e109685. https://doi.org/10.1371/journal.pone.0109685

    CAS  Article  Google Scholar 

  57. Simon V et al (2017) Carbon black nanoparticles inhibit aromatase expression and estradiol secretion in human granulosa cells through the ERK1/2 Pathway. Endocrinology 158:3200–3211. https://doi.org/10.1210/en.2017-00374

  58. Stice JP, Chen L, Kim SC, Jung JS, Tran AL, Liu TT, Knowlton AA (2011) 17beta-Estradiol, aging, inflammation, and the stress response in the female heart. Endocrinology 152:1589–1598. https://doi.org/10.1210/en.2010-0627

    CAS  Article  Google Scholar 

  59. Taechakraichana N, Jaisamrarn U, Panyakhamlerd K, Chaikittisilpa S, Limpaphayom KK (2002) Climacteric: concept, consequence and care. J Med Assoc Thailand = Chotmaihet thangphaet 85(Suppl 1):S1–S15

    Google Scholar 

  60. WHO (2005) WHO-air quality guidelines–global update 2005. https://www.who.int/airpollution/publications/aqg2005/en/. October 27th, 2020

  61. WHO (2020) WHO-cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. Accessed October 24th, 2020

  62. Xie F, Zhan R, Yan LC, Gong JB, Zhao Y, Ma J, Qian LJ (2016) Diet-induced elevation of circulating HSP70 may trigger cell adhesion and promote the development of atherosclerosis in rats. Cell Stress Chaperones 21:907–914. https://doi.org/10.1007/s12192-016-0716-2

    CAS  Article  Google Scholar 

  63. Yang Y et al (2019) Concentrated ambient PM2.5 exposure affects mice sperm quality and testosterone biosynthesis. Peer J 7:e8109. https://doi.org/10.7717/peerj.8109

  64. Zhao H, Tian Z, Hao J, Chen B (2005) Extragonadal aromatization increases with time after ovariectomy in rats. Reprod Biol Endocrinol RB&E 3(6). https://doi.org/10.1186/1477-7827-3-6

Download references

Acknowledgments

The authors would like to thank their colleagues from the Research Group in Physiology (UNIJUI).

Funding

This study was supported by the Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ). LCCB and GEH were recipients of scholarships from CAPES.

Author information

Affiliations

Authors

Contributions

LCCB, PBGF, JBS, and PTF completed all the experiment design described in this manuscript. LCCB evaluated the oxidative stress parameters and immunoblotting. LCCB, PBGF, JBS, PTF, and TGH performed the eHSP72 test. LCCB, PBGF, MSL, and TGH designed the study and provided experimental advice. LCCB did the statistical analysis, wrote the manuscript, and designed Fig. 1. PBGF, GEH, TGH, and MSL co-wrote this. All the authors had final approval of the submitted and published versions.

Corresponding author

Correspondence to Lílian Corrêa Costa-Beber.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study followed all ethical rules established by Arouca’s Act (Federal Law 11,794/2008) and the Guide for Care and Use of Experimental Animals, published by the National Institutes of Health (NIH publication no. 85–23, revised in 1996). This protocol was approved by the Animal Ethics Committee of UNIJUÍ (CEUA-UNIJUÍ, protocol 076/15).

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mohamed M. Abdel-Daim

Supplementary information

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa-Beber, L.C., Goettems-Fiorin, P.B., dos Santos, J.B. et al. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. Environ Sci Pollut Res 28, 23395–23404 (2021). https://doi.org/10.1007/s11356-021-12350-w

Download citation

Keywords

  • Air pollution
  • Estrogen
  • Heat shock protein
  • Oxidative stress
  • Cellular senescence
  • Cardiac lipids