Skip to main content

Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds

Abstract

In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Adrian L, Löffler FE (2016) Organohalide-respiring bacteria. Springer-Verlag Berlin Heidelberg https://doi.org/10.1007/978-3-662-49875-0_2

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994. : https://doi.org/10.1016/j.soilbio.2012.10.003

  • Atashgahi S, Maphosa F, Doğan E, Smidt H, Springael D, Dejonghe W (2013) Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones. FEMS Microbiol Ecol 84:133–142. https://doi.org/10.1111/1574-6941.12044

    CAS  Article  Google Scholar 

  • Atashgahi S, Lu Y, Zheng Y, Saccenti E, Suarez-Diez M, Ramiro-Garcia J, Eisenmann H, Elsner M, JM Stams A, Springael D, Dejonghe W, Smidt H (2017) Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environ Microbiol 19:968–981. : https://doi.org/10.1111/1462-2920.13531

  • Balderacchi M, Filippini M, Gemitzi A, Klöve B, Petitta M, Trevisan M, Wachniew P, Witczak S, Gargini A (2014) Does groundwater protection in Europe require new EU-wide environmental quality standards? Front Chem 2:32. .org/https://doi.org/10.3389/fchem.2014.00032

  • Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541-554. : https://doi.org/10.1002/pmic.200900311

  • Bolyen E, Rideout JR, Dillon M.R., Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson II MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

  • Bradley PM, Chapelle FH (2010) Biodegradation of chlorinated ethenes, In Stroo HF, Ward CH (Eds) In: In situ remediation of chlorinated solvent plumes, Springer, New York, pp. 39–67. https://doi.org/10.1007/978-1-4419-1401-9_1

  • Bruno L, Campo B, Di Martino A, Hong W, Amorosi A (2019) Peat layer accumulation and post-burial deformation during the mid-late Holocene in the Po coastal plain (Northern Italy). Basin Res 31:621–639. https://doi.org/10.1111/bre.12339

    Article  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA Turnbaugh PJ, Fierer N, Knight R, (2010) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108 Suppl 1:4516–4522. : https://doi.org/10.1073/pnas.1000080107

  • Cappelletti M, Ghezzi D, Zannoni D, Capaccioni B, Fedi S (2016) Diversity of methane-oxidizing bacteria in soils from “Hot Lands of Medolla” (Italy) featured by anomalous high-temperatures and biogenic CO2 emission. Microbes Environ 31:369–377. : https://doi.org/10.1264/jsme2.ME16087

  • Cappelletti M, Pinelli D, Fedi S, Zannoni D, Frascari D (2018) Aerobic co-metabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis. J Chem Technol Biotechnol 93:155–165. https://doi.org/10.1002/jctb.5335

    CAS  Article  Google Scholar 

  • Chiu HY, Liu KK, Chien HY, Surampalli RY, Kao CM (2013) Evaluation of enhanced reductive dechlorination of trichloroethylene using gene analysis: pilot-scale study. J Environ Eng 139:428–437. : https://doi.org/10.1061/(ASCE)EE.1943-7870.0000654

  • Clark K, Taggart DM, Baldwin BR, Ritalahti KM, Murdoch RW, Hatt JK, Löffler FE (2018) Normalized quantitative PCR measurements as predictors for ethene formation at sites impacted with chlorinated ethenes. Environ Sci Technol 52:13410-13420. https://doi.org/10.1021/acs.est.8b04373

  • Clarke KR, Gorley RN (2015) Getting started with PRIMER V7 “User Manual/Tutorial” PRIMER-E, Plymouth Marine Laboratory

  • Courbet C, Riviere A, Jeannottat S, Rinaldi S, Hunkeler D, Bendjoudi H, de Marsily G (2011) Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: mass balance, PCR and compound-specific stable isotope analysis. J Contam Hydrol 126:315–329. https://doi.org/10.1016/j.jconhyd.2011.08.009

    CAS  Article  Google Scholar 

  • Damgaard I, Bjerg PL, Baelum J, Scheutz C, Hunkeler D, Jacobsen CS, Tuxen N, Broholm MM (2013) Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis. J Contam Hydrol 146:37–50. : https://doi.org/10.1016/j.jconhyd.2012.11.010

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome- centric metagenomics. Science. 350:434-438. :https://doi.org/10.1126/science.aac7745

  • Filippini M, Stumpp C, Nijenhius I, Richnow HH, Gargini A (2015) Evaluation of aquifer recharge and vulnerability in an alluvial lowland using environmental tracers. J Hydrol 529:1657–1668. https://doi.org/10.1016/j.jhydrol.2015.07.055

    CAS  Article  Google Scholar 

  • Filippini M, Amorosi A, Campo B, Herrero-Martìn S, Nijenhuis I, Parker BL, Gargini A, (2016) Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting. J Contam Hydrol 192:129-139. :https://doi.org/10.1016/j.jconhyd.2016.07.003

  • Filippini M, Parker BL, Dinelli E, Wanner P, Chapman SW, Gargini A (2020) Assessing aquitard integrity in a complex aquifer–aquitard system contaminated by chlorinated hydrocarbons. Water Res 171:115388. : https://doi.org/10.1016/j.watres.2019.115388

  • Fillol M, Auguet JC, Casamayor EO, Borrego CM (2016) Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J 10:665–677. https://doi.org/10.1038/ismej.2015.143

    Article  Google Scholar 

  • Futagami T, Morono Y, Terada T, Kaksonen AH, Inagaki F (2009) Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. Appl Environ Microbiol 75:6905–6909. https://doi.org/10.1128/AEM.01124-09

    CAS  Article  Google Scholar 

  • Gargini A, Pasini M, Picone S, Rijnaarts H. Van Gaans P (2011) Chlorinated hydrocarbons plumes in a residential area. Site investigation to assess indoor vapor intrusion and human health risks. In: Saponaro S, Sezenna E, Bonomo L, (Eds) Vapor emission to outdoor air and enclosed spaces for human health risk assessment: site characterization, monitoring and modelling. Nova Science Publishers, Milan, pp. 211–233

  • Giallo J, Gaudin C, Belaich JP (1985) Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 49:1216–1221. https://doi.org/10.1128/AEM.49.5.1216-1221.1985

    CAS  Article  Google Scholar 

  • Gilbert D, Mitchell EAD (2006) Microbial diversity in Sphagnum peatlands In: Peatlands: evolution and records of environmental and climate changes. Martini IP, Cortizas AM, Chesworth W (eds) Elsevier, Amsterdam, pp 287–318

  • Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72:7849-7856. : https://doi.org/10.1128/AEM.01269-06

  • Hawkins AN, Johnson KW, Brauer SL (2014) Southern Appalachian Peatlands support high Archaeal diversity. Microb Ecol 67:587–602. https://doi.org/10.1007/s00248-013-0352-7

    CAS  Article  Google Scholar 

  • He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert S.M, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1:16035. https://doi.org/10.1038/nmicrobiol.2016.35

  • Herlemann DP, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 73:6682–6685. https://doi.org/10.1128/AEM.00712-07

    CAS  Article  Google Scholar 

  • Hermon L, Hellal J, Denonfoux J, Vuilleumier S, Imfeld G, Urien C, Ferreira S, Joulian C (2019) Functional genes and bacterial communities during organohalide respiration of chloroethenes in microcosms of multi-contaminated groundwater. Front Microbiol 10:89. https://doi.org/10.3389/fmicb.2019.00089

    Article  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321. https://doi.org/10.1007/s002030050577

    CAS  Article  Google Scholar 

  • Hug LA, Edwards EA (2013) Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens. Front Microbiol 4:341. https://doi.org/10.3389/fmicb.2013.00341. eCollection 2013. Erratum in: Front Microbiol (2015) 6:30

  • Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA (2012) Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 13:1–19. https://doi.org/10.1186/1471-2164-13-327

    CAS  Article  Google Scholar 

  • Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, Aravena R, Bjerg PL (2011) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119:69–79. https://doi.org/10.1016/j.jconhyd.2010.09.009

    CAS  Article  Google Scholar 

  • IARC (2008) IARC monographs on the evaluation of carcinogenic risks to humans. 1, 3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Monogr Eval Carcinog Risks Hum 97:3–471

    Google Scholar 

  • Imachi H, Sakai S, Lipp JS, Miyazaki M, Saito Y, Yamanaka Y, Hinrichs KU, Inagaki F, Takai K (2014) Pelolinea submarina gen. nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment. Int J Syst Evol Microbiol 64:812–818. https://doi.org/10.1099/ijs.0.057547-0

    CAS  Article  Google Scholar 

  • Imfeld G, Pieper H, Shani N, Rossi P, Nikolausz M, Nijenhuis I, Paschke H, Weiss H, Richnow HH (2011) Characterization of groundwater microbial communities, dechlorinating bacteria, and in situ biodegradation of chloroethenes along a vertical gradient. Water Air Soil Pollut 211:107–122. https://doi.org/10.1007/s11270-011-0774-0

    CAS  Article  Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl Environ Microbiol 69:7224–7235. https://doi.org/10.1128/aem.69.12.7224-7235.2003

    CAS  Article  Google Scholar 

  • Kotik M, Davidová A, Voříšková J, Baldrian P (2013) Bacterial communities in tetrachloroethene-polluted groundwaters: a case study. Sci Total Environ 454–455:517–527. https://doi.org/10.1016/j.scitotenv.2013.02.082

    CAS  Article  Google Scholar 

  • Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351. https://doi.org/10.1128/AEM.70.10.6347-6351.2004

    CAS  Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  Google Scholar 

  • Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP (2016) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18:1200–1211. https://doi.org/10.1111/1462-2920.13142

    CAS  Article  Google Scholar 

  • Lee PK, Warnecke F, Brodie EL, Macbeth TW, Conrad ME, Andersen GL, Alvarez-Cohen L (2012) Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ Sci Technol 46:1044–1054. https://doi.org/10.1021/es203005k

    CAS  Article  Google Scholar 

  • Lee SS, Kaown D, Lee KK (2015) Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea. J Contam Hydrol 182:231–243. https://doi.org/10.1016/j.jconhyd.2015.09.005

    CAS  Article  Google Scholar 

  • Liu Y, Qiao JT, Yuan XZ, Guo RB, Qiu YL (2014) Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge. Int J Syst Evol Microbiol 64:1756–1762. https://doi.org/10.1099/ijs.0.060186-0

    CAS  Article  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen BB (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218. https://doi.org/10.1038/nature12033

    CAS  Article  Google Scholar 

  • Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS Jr (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341. https://doi.org/10.1128/AEM.70.12.7329-7341.2004

    CAS  Article  Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press

  • Maphosa F, Smidt H, de Vos WM, Röling WF (2010) Microbial community- and metabolite dynamics of an anoxic dechlorinating bioreactor. Environ Sci Technol 44:4884–4890. https://doi.org/10.1021/es903721s

    CAS  Article  Google Scholar 

  • Mattes TE; Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475. https://doi.org/10.1111/j.1574-6976.2010.00210.x

  • Matturro B, Pierro L, Frascadore E, Petrangeli Papini M, Rossetti S (2018) Microbial community changes in a chlorinated solvents polluted aquifer over the field scale treatment with poly-3-hydroxybutyrate as amendment. Front Microbiol 9:1664. https://doi.org/10.3389/fmicb.2018.01664

    Article  Google Scholar 

  • Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. https://doi.org/10.1126/science.276.5318.1568

    Article  Google Scholar 

  • Mazumder TK, Nishio N, Fukuzaki S, Nagai S (1987) Production of extracellular vitamin B-12 compounds from methanol by Methanosarcina barkeri. Appl Microbiol Biotechnol 26:511–516. https://doi.org/10.1007/BF00253023

    CAS  Article  Google Scholar 

  • McCarty PL (2010) Groundwater contamination by chlorinated solvents: history, remediation technologies and strategies. In: Stroo H, Ward C (eds) In situ remediation of chlorinated solvent plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, pp 1–28. https://doi.org/10.1007/978-1-4419-1401-9_1

    Chapter  Google Scholar 

  • Men Y, Seth EC, Yi S, Allen RH, Taga ME, Alvarez-Cohen L (2014) Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia. Appl Environ Microbiol 80:2133–2141. https://doi.org/10.1128/AEM.03477-13

    CAS  Article  Google Scholar 

  • Meng J, Xu J, Qin D, He Y, Xiao X, Wang F (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659. https://doi.org/10.1038/ismej.2013.174

    CAS  Article  Google Scholar 

  • Mishra S, Lee WA, Hooijer A, Reuben S, Sudiana IM, Idris A, Swarup S (2014) Microbial and metabolic profiling reveal strong influence of water table and land-use patterns on classification of degraded tropical peatlands. Biogeosciences 11:14009–14042. https://doi.org/10.5194/bg-11-1727-2014

    Article  Google Scholar 

  • Molinari FC, Severi P, Boldrini G, Dugoni G, Caputo DR, Martinelli G, Colombani N, Gargini A, Mastrocicco M, Messina A (2007) Risorse idriche sotterranee della Provincia di Ferrara (in italian; transl. Groundwater resources of the Ferrara Province), Risorse idriche sotterranee della Provincia di Ferrara (in italian; transl. Groundwater resources of the Ferrara Province). DB-MAP printer, Florence, Italy, pp. 1-62

  • Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. https://doi.org/10.1128/AEM.70.8.4880-4888.2004

    CAS  Article  Google Scholar 

  • Nijenhuis I, Nikolausz M, Köth A, Felföldi T, Weiss H, Drangmeister J, Groβmann J, Kästner M, Richnow HH (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the bitterfeld/wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67:300–311. https://doi.org/10.1016/j.chemosphere.2006.09.084

    CAS  Article  Google Scholar 

  • Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow HH, Gargini A (2013) A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J Contam Hydrol 153:92–105. https://doi.org/10.1016/j.jconhyd.2013.06.004

    CAS  Article  Google Scholar 

  • Nunoura T, Hirai M, Miyazaki M, Kazama H, MakitaH HH, Furushima Y, Yamamoto H, Imachi H, Takai K (2013) Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ 28:228–235. https://doi.org/10.1264/jsme2.me12193

    Article  Google Scholar 

  • Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560. https://doi.org/10.1038/ismej.2008.7

    CAS  Article  Google Scholar 

  • Parker BL, Cherry JA, Chapman SW, Guilbeault MA (2003) Review and analysis of chlorinated solvent DNAPL distributions in five sandy aquifers. Vadose Zone J 2:116–137. https://doi.org/10.2136/vzj2003.1160

    CAS  Article  Google Scholar 

  • Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV (2013) Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:86–92. https://doi.org/10.1099/ijs.0.041012-0

    CAS  Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  Google Scholar 

  • Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson KS Jr, Alvarez-Cohen L (2006) Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534. https://doi.org/10.1007/s10532-005-9023-9

    CAS  Article  Google Scholar 

  • Ravachol J, de Philip P, Borne R, Mansuelle P, Maté MJ, Perret S, Fierobe HP (2016) Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Sci Rep 6:22770. https://doi.org/10.1038/srep22770

    CAS  Article  Google Scholar 

  • Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118. https://doi.org/10.1016/j.mimet.2003.09.019

    CAS  Article  Google Scholar 

  • Regione Emilia-Romagna and ENI-AGIP, 1998. Riserve idriche sotterranee della Regione Emilia-Romagna (In italian; transl.: groundwater resources of the Emilia-Romagna Region). S.EL.CA. printer, Florence

  • Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L (2002) Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662. https://doi.org/10.1021/es0157797

    CAS  Article  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437. https://doi.org/10.1038/nature12352

    CAS  Article  Google Scholar 

  • Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714. https://doi.org/10.1038/ismej.2009.2

    Article  Google Scholar 

  • Rowe AR, Lazar BJ, Morris RM, Richardson RE (2008) Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated “Dehalococcoides” and Methanospirillum species. Appl Environ Microbiol 74:6709–6719. https://doi.org/10.1128/AEM.00445-08

    CAS  Article  Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936. https://doi.org/10.1099/ijs.0.65571-0

    Article  Google Scholar 

  • Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82:4056–4069. https://doi.org/10.1128/AEM.00882-16

    CAS  Article  Google Scholar 

  • Shan H, Kurtz HD, Mykytczuk N, Trevors JT, Freedman DL (2010) Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates. Appl Environ Microbiol 76:6463–6469. https://doi.org/10.1128/AEM.01191-10

    CAS  Article  Google Scholar 

  • Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Land M, Chang YJ, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, Yan J, Bowman KS, da Costa MS, Rainey FA, Moe WM (2012) Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to “Dehalococcoides” strains. Stand. Genomic Sci 6:251–264. https://doi.org/10.4056/sigs.2806097

  • Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ Microbiol 72:1980–1987. https://doi.org/10.1128/AEM.72.3.1980-1987.2006

  • Takeuchi M, Kawabe Y, Watanabe E, Oiwa T, Takahashi M, Nanba K, Kamagata Y, Hanada S, Ohko Y, Komai T (2011) Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. J Contam Hydrol 124:14–24. https://doi.org/10.1016/j.jconhyd.2011.01.003

    CAS  Article  Google Scholar 

  • Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, Li JT, Huang LN, Li WJ, Jiang HC, Dong HL, Shu WS (2019) Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 13:2044–2057. https://doi.org/10.1038/s41396-019-0415-y

    CAS  Article  Google Scholar 

  • Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Philos Trans R Soc Lond Ser B Biol Sci 368:20120318. https://doi.org/10.1098/rstb.2012.0318

    CAS  Article  Google Scholar 

  • Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733. https://doi.org/10.1111/j.1574-6976.2006.00029.x

    CAS  Article  Google Scholar 

  • Xia Y, Wang Y, Wang Y, Chin FY, Zhang T (2016) Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation. Biotechnol Biofuels 9:111. https://doi.org/10.1186/s13068-016-0524-z

    CAS  Article  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov.and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes,and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340. https://doi.org/10.1099/ijs.0.64169-0

  • Yohda M, Yagi O, Takechi A, Kitajima M, Matsuda H, Miyamura N, Aizawa T, Nakajima M, Sunairi M, Daiba A, Miyajima T, Teruya M, Teruya K, Shiroma A, Shimoji M, Tamotsu H, Juan A, Nakano K, Aoyama M, Terabayashi Y, Satou K, Hirano T (2015) Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene. J Biosci Bioeng 120:69–77. https://doi.org/10.1016/j.jbiosc.2014.12.001

    CAS  Article  Google Scholar 

  • Yoshikawa M, Takeuchi M, Zhang M (2017) Distribution of Dehalococcoides 16S rRNA and dehalogenase genes in contaminated sites. Environ Nat Res Research 7:37. https://doi.org/10.5539/enrr.v7n2p37

    Article  Google Scholar 

  • Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F (2018) Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci U S A 115:6022–6027. https://doi.org/10.1073/pnas.1718854115

    CAS  Article  Google Scholar 

  • Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, Krause L (2017) Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 33:782–783. https://doi.org/10.1093/bioinformatics/btw725

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Environmental Service of the Municipality of Ferrara for their support during field investigation. We are also grateful to the UNIBO student Alessia De Matteis for the precious contribution in the experimental work.

Funding

This study was funded by the University of Bologna (RFO grant). AF is financed by the ELECTRA project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 826244.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Stefano Fedi, Daniele Ghezzi, Maria Filippini, Martina Cappelletti; methodology: Stefano Fedi, Daniele Ghezzi, Martina Cappelletti; formal analysis and investigation: Stefano Fedi, Daniele Ghezzi, Maria Filippini, Andrea Firrincieli; writing—original draft preparation: Stefano Fedi, Daniele Ghezzi, Maria Filippini; Andrea Firrincieli; writing—review and editing: Stefano Fedi, Daniele Ghezzi, Maria Filippini, Davide Zannoni; funding acquisition: Davide Zannoni, Alessandro Gargini; supervision: Stefano Fedi, Alessandro Gargini, Davide Zannoni

Corresponding author

Correspondence to Stefano Fedi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Robert Duran

Supplementary information

ESM 1
figure 10

Fig. S1. Rarefaction analysis of the Illumina sequencing data from Caretti and Manzi sites. (PNG 4063 kb)

High resolution image (TIF 1443 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 19 kb)

ESM 4

(DOCX 28 kb)

ESM 5

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghezzi, D., Filippini, M., Cappelletti, M. et al. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. Environ Sci Pollut Res 28, 23017–23035 (2021). https://doi.org/10.1007/s11356-020-12236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12236-3

Keywords

  • Bioremediation
  • Reductive dechlorination
  • Chloroethylene
  • 16S rRNA
  • Microbial community