Skip to main content

Novel nano network trigonal prismatic Ba2CoO4–deficient BaCoO3 for high-affinity sorption of radiolanthanide elements of biomedical applications: synthesis and sorption studies

Abstract

Nano trigonal prismatic Ba2CoO4 with hierarchical structure and deficient BaCoO3 with columnar structure have been prepared at low temperatures (400 [BC4] and 500 [BC5]) °C/3h using green method. X-ray diffraction (XRD) results demonstrate the presence of enriched Ba2CoO4 phase at 400 °C and multiphase structures: BaCoO3, BaCoO3-δ, and Co3O4 with a decrease in the amount of Ba2CoO4 at 500 °C. The prepared powders are characterized by a high specific surface area (SSA) values which are reflected to the mode of synthesis that leads to produce materials with massive active sites. The SSA of BC4 is higher than that of BC5 which can be correlated to the difference in the microstructure analysis of BC4 and BC5 as given from scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) studies. Electron spin resonance (ESR) spectroscopy as an effective method for the characterization of vacancy-rich nanostructures indicates that the presence of oxygen vacancies is related mainly to BaCoO3, BaCoO3-δ, and Co3O4 phases while the effective oxygen vacancies is in BaCoO3 and BaCoO3-δ. The nanocrystalline structures of BC4 and BC5 as novel nano-adsorbents are the first time to be tested. Production of Gd radioisotopes through natGd(n,γ)153,159,161Gd and carrier-free 161Tb through 160Gd(n,γ,) 161Gd \( \overset{\kern1em {\beta}^{-}\kern1em }{\to } \) 161Tb are achieved at 2nd Egyptian nuclear research reactor (ETRR-2). Preliminary sorption study of Gd radioisotopes (represent the lanthanide elements) shows a promising material for the application in the separation and removal of lanthanide elements. The results demonstrated that the fast interaction and efficient sorption of lanthanides ions are based on the novel synthesized nanomaterial that can be considered for the upscale application in this field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ahmed AI, Samra SE, El-Hakam SA (1991) Structural and surface aspects of thermally treated copper aluminium mixed hydroxides. Can J Chem 69:1511–1515

    CAS  Article  Google Scholar 

  2. Ahmed IM, Attia LA, Attallah MF (2020) Modification of perlite to prepare low cost zeolite as adsorbent material for removal of 144Ce and 152+154Eu from aqueous solution. Radiochim Acta 108:727–735. https://doi.org/10.1515/ract-2019-3221

    CAS  Article  Google Scholar 

  3. Alakhras F (2018) Kinetic studies on the removal of some lanthanide ions from aqueous solutions using amidoxime-hydroxamic acid polymer. J of Analy Methods in Chem 2018:1–7. https://doi.org/10.1155/2018/4058503

    CAS  Article  Google Scholar 

  4. Arivukkarasu KR, Venkatesh S, Karthikeyan N, Vishista K (2019) Preparation and characterisation of pure and neodymium doped samarium strontium cobaltites. Mater Res Innov 23(5):299–304

    CAS  Article  Google Scholar 

  5. Atta NF, Galal A, El-Ads EH (2016) In L. pan (ed.) Perovskite materials: synthesis, characterization, properties, and applications the third edition. IntechOpen, London, UK

  6. Attallah MF, Rizk SE, Shady SA (2018) Separation of 152+154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate. Nucl Sci Tech 29:84. https://doi.org/10.1007/s41365-018-0423-z

    Article  Google Scholar 

  7. Borai E, Attallah M, Harjula R, Koivula R, Paajanen A (2012) Separation of europium from cobalt using antimony silicates in sulfate acidic media, mineral processing and extractive metallurgy review. An International Journal 33(3):204–219

    CAS  Google Scholar 

  8. Borai EH, Shahr El-Din AM, El Afifi EM, Aglan RF, Abo-Aly MM (2016) Subsequent separation and selective extraction of thorium (IV), iron (III), zirconium (IV) and cerium (III) from aqueous sulfate medium. S Afr J Chem 69:148–156

    CAS  Article  Google Scholar 

  9. Borai EH, Hamed MM, Shahr El-Din AM (2017) A new method for processing of low-grade monazite concentrates. J Geol Soc India 89:600–604

    CAS  Article  Google Scholar 

  10. Borai EH, Attallah MF, Elgazzar AH, El-Tabl AS (2019) Isotherm and kinetic sorption of some lanthanides and iron from aqueous solution by aluminum silicotitante exchanger. Part Sci Technol 37(4):410–422

    Article  CAS  Google Scholar 

  11. Boulahya K, Parras M, Vegas A, González-Calbet JM (2000) A comparative crystal chemical analysis of Ba2CoO4 and BaCoO3. Solid State Sci 2:57–64

    CAS  Article  Google Scholar 

  12. Browne E, Firestone RB, Shirley VS (1986) Table of radioactive isotopes. John Wiley and Sons Inc, New York, NY (USA) 1050p

    Google Scholar 

  13. Bulimestru I, Mentré O, Tancret N, Rolle A, Djelal N, Burylo L, Cornei N, Popa N, Gulea A (2010) Heterobimetallic Ba–co aminopolycarboxylate complexes as precursors for BaCoO3-δ oxides; towards a one-stage-deposition of cobaltite films. J Mater Chem 20:10724–10734

    CAS  Article  Google Scholar 

  14. Bunina YZ, Bryleva K, Yurchenko O, Belikov K (2017) Sorption materials based on ethylene glycol dimethacrylate and methacrylic acid copolymers for rare earth elements extraction from aqueous solutions. Adsor Sci & Techn 35(5–6):545–559. https://doi.org/10.1177/0263617417701455

    CAS  Article  Google Scholar 

  15. Chaudhary RG, Ali P, Gandhare NV, Tanna JA, Juneja HD (2019) Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis(paramethoxy phenyl carbamide) using DTG/DTA techniques. Arab J Chem 12(7):1070–1082

    CAS  Article  Google Scholar 

  16. Chen Z, Liang Y, Jia D, Chen W, Cui Z, Wang X (2017) Layered silicate RUB-15 for efficient removal of UO22+ and heavy metal ions by ion-exchange. Environ Sci Nano.:1851–1858

  17. Cotton SA (2005) Establishing coordination numbers for the lanthanides in simple complexes. C R Chimie 8:129–145

    CAS  Article  Google Scholar 

  18. David R, Kabbour H, Bordet P, Pelloquin D, Leynaud O, Trentesaux M, Mentré O (2014) Triple CoII, III, IV charge ordering and spin states in modular cobaltites: a systematization through experimental and virtual compounds. J Mater Chem C 2:9457–9466

    CAS  Article  Google Scholar 

  19. Deganello F, Liotta LF, Marcí G, Fabbri E, Traversa E (2013) Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater Renew Sustain Energy 2(8 (1–14)). https://doi.org/10.1007/s40243-013-0008-z

  20. Dotto GL, Cadaval TRS, Pinto LAA (2012) Preparation of bionanoparticles derived from Spirulina platensis and its application for Cr (VI) removal from aqueous solutions. J Ind Eng Chem 18:1925–1930

    CAS  Article  Google Scholar 

  21. Dotto GL, Gonçalves JO, Cadaval TRS Jr, Pinto LAA (2013) Biosorption of phenol onto bionanoparticles from Spirulina sp. LEB 18. J Colloid Interf Sci 407:450–456

    CAS  Article  Google Scholar 

  22. El-Hakam SA, El-Khouly AA, Khder AS (1999) Surface properties and catalytic activity of NilAI203-AIP04 catalysts. Adsorpt Sci Technol 17(5):417–430

    CAS  Article  Google Scholar 

  23. El-saied HA, Shahr El-Din AM, Masry BA, Ibrahim AM (2020) A promising superabsorbent nanocomposite based on grafting biopolymer/nanomagnetite for capture of 134Cs, 85Sr and 60Co radionuclides. J Polym Environ 28:1749–1765

    CAS  Article  Google Scholar 

  24. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres, from Salih Salih (Ed.) Fourier Transform - Materials Analysis, InTech Rijeka Croatia, Shanghai, China, pp. 48 (2012)

  25. Firestone RB, Eckstrom LP (2004) Table of radioactive isotopes, version 2.1. http://ie.lbl.gov/toi

  26. Franciski MA, Peres EC, Godinho M, Perondi D, Foletto EL, Collazzo GC, Dotto GL (2018) Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag 78:630–638

    CAS  Article  Google Scholar 

  27. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  28. German RM (2016) Sintering trajectories: description on how density, surface area, and grain size change. JOM 68(3):878–884

    Article  Google Scholar 

  29. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    CAS  Article  Google Scholar 

  30. Habibi N, Wang Y, Arandiyan H, Rezaei M (2017) Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv Powder Technol 28(4):1249–1257

    CAS  Article  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Article  Google Scholar 

  32. Hu Z, Zhang H, Wang J, Chen L, Xie X, Liu X, Yao J, Chang A (2017) Fabrication and thermosensitive characteristics of BaCoO3−δ ceramics for low temperature negative temperature coefficient thermistor. J Mater Sci Mater Electron 28:6239–6244

    CAS  Article  Google Scholar 

  33. IAEA, International Atomic Energy Agency (2016) Criteria for radionuclide activity concentrations for food and drinking water, Series: IAEA TECDOC series, ISSN 1011–4289 ; no. 1788

  34. Imam DM, Youssef MA, Attallah MF (2020) Promising framework of nanocomposite materials: synthesis and radio-lanthanides labeling for nuclear medicine application. J Radioanal Nucl Chem 323:749–761

    CAS  Article  Google Scholar 

  35. Ismail SM, Labib S, Attallah SS (2013) Preparation and characterization of nano-cadmium ferrite. J Ceramics 2013:1–8. https://doi.org/10.1155/2013/526434

    CAS  Article  Google Scholar 

  36. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55(13):3852–3860

    CAS  Article  Google Scholar 

  37. Ji Q, Bi L, Zhang J, Cao H, Zhao XS (2020) The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ Sci 13:1408–1428. https://doi.org/10.1039/D0EE00092B

    CAS  Article  Google Scholar 

  38. Jin R, Sha H, Khalifah PG, Sykora RE, Sales BC, Mandrus D, Zhang J (2006) Ba2CoO4: crystal growth, structure refinement, and physical properties. Phys Rev B 73(174404):1–7

    Google Scholar 

  39. Karkeh-abadi F, Saber-Samandari S, Saber-Samandari S (2016) The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of co(II) ions from aqueous solutions. J Hazard Mater 312:224–233

    CAS  Article  Google Scholar 

  40. Kocjan A, Logar M, Shen Z (2017) The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci Rep 7:2541. https://doi.org/10.1038/s41598-017-02760-7

    CAS  Article  Google Scholar 

  41. Koning AJ, Rochman D, Kopecky J, Sublet Ch, Fleming M (2015) TENDL-2015: TALYS-based evaluated nuclear data library. http://www.talys.eu/tendl-2015/

  42. Korish J (1969) Modern methods for the separation of rare metal ions. Pergamon, Oxford

    Google Scholar 

  43. Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics 6:651–658

    Article  Google Scholar 

  44. Labib S, Shahr El-Din AM, Allan KF, Attallah MF (2020) Synthesis of highly deficient nano SrCoOx for the purification of lanthanides from monazite concentrate. J Radioanal Nucl Chem 323:1179–1188

    CAS  Article  Google Scholar 

  45. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  46. Langmuir I (1918) J Am Chem Soc 40:1361–1368

    CAS  Article  Google Scholar 

  47. Li Y, Xu L, Bai P, Rong G, Zhang D, Diwu J, Yan W, Chai Z, Wang S (2019) Emerging investigator series: significantly enhanced uptake of Eu3+ on a nanoporous zeolitic mineral in the presence of UO22+: insights into the impact of cation–cation interaction on the geochemical behavior of lanthanides and actinides. Environ Sci Nano 6:736–746

    CAS  Article  Google Scholar 

  48. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press San Diego, California, USA, p 139

    Google Scholar 

  49. Liu B, Zhang Y (2008) Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine–nitrate process for solid oxide fuel cell cathode. J Alloys Compd 453:418–422

    CAS  Article  Google Scholar 

  50. Lütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LAA, Cadaval TRS Jr (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396–103404

    Article  CAS  Google Scholar 

  51. Marcus Y, Kertes AS (1969) Ion exchange and solvent extraction of metal complexes. Wiley, London

    Google Scholar 

  52. Mentré O, Iorgulescu M, Huvé M, Kabbour H, Renaut N, Daviero-Minaud S, Colis S, Roussel P (2015) BaCoO2.22: the most oxygen-deficient certified cubic perovskite. Dalton Trans 44:10728–10737

    Article  CAS  Google Scholar 

  53. Miaomiao T, Qiong J, Wuping L (2013) Studies on synergistic solvent extraction of rare earth elements from nitrate medium by mixtures of 8-hydroxyquinoline with cyanex 301 or cyanex 302. J Rare Earths 31(6):604–608

    Article  CAS  Google Scholar 

  54. Müller-Buschbaum H (2013) On the crystal chemistry of alkaline earth- and rare earth-oxocobaltates. Z Anorg Allg Chem 639(15):2715–2735

    Article  CAS  Google Scholar 

  55. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. IJOST. 4(1):97–118

    Article  Google Scholar 

  56. Nayl AA, Ahmed IM, Abd-Elhamid AI, Aly HF, Attallah MF (2019) Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials. Sep Purif Technol 234:116060. https://doi.org/10.1016/j.seppur.2019.116060

    CAS  Article  Google Scholar 

  57. Negas T, Roth RS (1972) Proceedings of the 5th materials research symposium sponsored by the Institute for Materials Research, National Bureau of standards Gaithersburg. Maryland Solid State Chem 364:233

    Google Scholar 

  58. Noriega SE, Subramanian A (2011) Consequences of neutralization on the proliferation and cytoskeletal organization of chondrocytes on chitosan-based matrices. Int J Carbohydr Chem 2011:1–13. https://doi.org/10.1155/2011/809743

    CAS  Article  Google Scholar 

  59. Novikov VV, Pavlov AA, Nelyubina YV, Boulon ME, Varzatskii OA, Voloshin YZ, Winpenny REP (2015) A trigonal prismatic mononuclear cobalt(II) complex showing single-molecule magnet behavior. J Am Chem Soc 137:9792–9795

    CAS  Article  Google Scholar 

  60. Oliveira MP, Mercena SG, Meneses CT, Jesus CBR, Pagliuso PG, Duque JGS (2018) Phase coexistence and magnetic behavior in the low-dimensional hexagonal cobaltites BaxA1-xCoO3- δ (a=mg or Ca and 0≤x≤0:20). J Magn Magn Mater 451:774–779

    CAS  Article  Google Scholar 

  61. Pardo V, Iglesias M, Baldomir D, Castro J, Arias JE (2003) Geometry optimization and electronic structure of BaCoO3. Solid State Communi 128:101–106

    CAS  Article  Google Scholar 

  62. Parvulescu V (2019) Catalytic behavior of metal active sites from modified mesoporous silicas in oxidation of organic compounds. Intech, Croatia. https://doi.org/10.5772/intechopen.90209

    Book  Google Scholar 

  63. Prabaharan DDM, Sadaiyandi K, Mahendran M, Sagadevan S (2017) Precipitation method and characterization of cobalt oxide nanoparticles. Appl Phys A Mater Sci Process 123(264):1–6

    CAS  Google Scholar 

  64. Premaratne WAPJ, Pryadarshana WMGI, Gunawardena SHP, De Alwis AAP (2013) Synthesis of nanosilica from paddy husk ash and their surface functionalization. J Sci Univ Kelaniya 8:33–48

    Article  Google Scholar 

  65. Preston JS, Preez AC (1995) Synergistic effects in solvent extraction systems based on alkyl salicylic acids. Extraction of trivalent rare-earth metals in the presence of aliphatic amides. Solv Extr Ion Exch 13(4):647–663

    CAS  Article  Google Scholar 

  66. Puigdomenech I (2008) HYDRA (hydrochemical equilibrium constant database) and MEDUSA (make equilibrium diagrams using sophisticated algorithms) programs. Royal Institute of Technology, Sweden. http://www.kemi.kth.se/medus a

  67. Raveau B, Seikh MM (2012) In Bernard Raveau and Md. Motin Seikh (ed) Crystal chemistry of cobalt oxide: cobalt oxides: from crystal chemistry to physics the first edition. Wiley-VCH Verlag GmbH & Co. KGaA, Germany

  68. Ryu G, Guo H, Zhao L, Fernández-Díaz MT, Drees Y, Li ZW, Hu Z, Komarek AC (2019) Single crystal growth and magnetic properties of high oxidation state material Ba2CoO4. Phys. Status Solidi RRL 13:1800537 (1–5)

    Article  CAS  Google Scholar 

  69. Schoedel A, Zaworotko MJ (2014) [M33-O)(O2CR)6] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chem Sci 5:1269–1282

    CAS  Article  Google Scholar 

  70. Sha H (2010) Material synthesis and characterization on low-dimensional cobaltates, Ph. D thesis, Florida International University, Miami, USA

  71. Shaban M, Ashraf AM, Abukhadra MR (2018) TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci Rep 8:781. https://doi.org/10.1038/s41598-018-19172-w

    CAS  Article  Google Scholar 

  72. Shahr El-Din AM, Borai EH, Abd El-Ghany MS (2018) Selective separation of thorium from rare earth elements liquor during the alkaline processing of Egyptian monazite concentrate. Main Group Chemistry 17(1):79–88

    CAS  Article  Google Scholar 

  73. Shahr El-Din AM, Monir T, Sayed MA (2019) Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ Sci Pollut Res 26(25):25550–25563

    Article  CAS  Google Scholar 

  74. Shen Q, Zhang Y, Ding H, Wu L, Xu Y, Shi B, Zheng Y, Yuan J (2017) Performance and stability enhancement of perovskite-type nanomaterials applied for carbon capture utilizing oxyfuel combustion. Energies. 10(164):1–11. https://doi.org/10.3390/en10020164

    CAS  Article  Google Scholar 

  75. Stensitzki T, Adam S, Schlesinger R, Schapiro I, Heyne K (2020) Ultrafast backbone protonation in channelrhodopsin-1 captured by polarization resolved Fs Vis-pump—IR-probe spectroscopy and computational methods, Molecules. 25 848 (1–13)

  76. Tan L, Gu X, Yang L, Jin W, Zhang L, Xu N (2003) Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3–δ perovskite-type membranes. J Membr Sci 212:157–165

    CAS  Article  Google Scholar 

  77. Tan X, Fang M, Li J, Lu Y, Wang X (2009) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater 168:458–465

    CAS  Article  Google Scholar 

  78. Thue PS, Reis GS, Lima EC, Sieliechi JM, Dotto GL, Wamba AGN, Dias SLP, Pavan FA (2017) Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. Res Chem Intermed 43:1063–1087

    CAS  Article  Google Scholar 

  79. Tischer S, Börnhorst M, Amsler J, Schoch G, Deutschmann O (2019) Thermodynamics and reaction mechanism of urea decomposition. Phys Chem Chem Phys 21(30):16785–16797

    CAS  Article  Google Scholar 

  80. Toprak MS, Darab M, Syvertsen GE, Muhammed M (2010) Synthesis of nanostructured BSCF by oxalate co-precipitation—as potential cathode material for solid oxide fuels cells. Int J Hydrogen En 35:9448–9454

    CAS  Article  Google Scholar 

  81. Wang X, Yu S, Jin J, Wang H, Alharbi NS, Alsaedi A, Hayat T, Wang X (2016) Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Science Bulletin 61:1583–1593

    CAS  Article  Google Scholar 

  82. Xu W, Cao B, Lin H, Cheng W, Luo C, Peng H, Duan C (2019) H2O2 decomposition catalyzed by strontium cobaltites and their application in Rhodamine B degradation in aqueous medium. J Mater Sci 54:8216–8225

    CAS  Article  Google Scholar 

  83. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–558

    CAS  Article  Google Scholar 

  84. Yang M-Q, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323 (1–24)

    Article  CAS  Google Scholar 

  85. Yantasee W, Fryxell EG, Addleman SR, Wiacek JR, Koonsiripaiboon W, Pattamakomsan K, Sukwarotwat V, Xu J, Raymond NK (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J of Hazard Mate 168:1233–1238

    CAS  Article  Google Scholar 

  86. Yehia M, Labib S, Ismail SM (2014) Structural and magnetic properties of nano-NiFe2O4 prepared using green nanotechnology. Physica B Condens Matter 446:49–54

    CAS  Article  Google Scholar 

  87. Yehia M, Labib S, Ismail S (2019) Structural, optical, and magnetic properties of co-doped SnO2 nanoparticles. J Electron Mater 48:4170–4178

    CAS  Article  Google Scholar 

  88. Yi J, Zhang H, Zhang Z, Chen D (2018) Hierarchical porous hollow SnO2 nanofiber sensing electrode for high performance potentiometric H2 sensor. Sensors Actuators B Chem 268:456–464

    CAS  Article  Google Scholar 

  89. Zhang Q, Cao G, Ye F, Cao H, Matsuda M, Tennant DA, Chi S, Nagler SE, Shelton WA, Jin R, Plummer EW, Zhang J (2019) Anomalous magnetic behavior in Ba2CoO4 with isolated CoO4 tetrahedra. Phys Rev B 99(9):094416. https://doi.org/10.1103/PhysRevB.99.094416

    CAS  Article  Google Scholar 

  90. Zhou C, Feng Z, Zhang Y, Hu L, Chen R, Shan B, Yin H, Wang WG, Huang A (2015) Enhanced catalytic activity for NO oxidation over Ba doped LaCoO3 catalyst. RSC Adv 5:28054–28059

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Mohammed Yehia at Reactor Physics Department, Nuclear Researches Center, Egyptian Atomic Energy Authority (EAEA) for his valuable effort in the identification of XRD phases hoping for him all the best successes. M.F. Attallah is extending appreciation and thanks expressing their gratitude to the crew of the 2nd Egyptian Nuclear Research Reactor (ETRR-2) at the EAEA for their valuable assistance in the course of production of requested radioisotopes in due time.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

Shiraz Labib and Mohamed F. Attallah put the idea of research points and the concept of set paper. Shiraz Labib and Karam F. Allan synthesized and characterized the nanomaterials. Mohamed F. Attallah and Ahmed M. Shahr El-Din performed the sorption experiments and analyzed and interpreted the collected data sorption behavior and application part. Shiraz Labib and Mohamed F. Attallah were a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed F. Attallah.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahr El-Din, A.M., Labib, S., Allan, K.F. et al. Novel nano network trigonal prismatic Ba2CoO4–deficient BaCoO3 for high-affinity sorption of radiolanthanide elements of biomedical applications: synthesis and sorption studies. Environ Sci Pollut Res 28, 21936–21949 (2021). https://doi.org/10.1007/s11356-020-12233-6

Download citation

Keywords

  • Novel nanomaterial
  • Green synthesis
  • Lanthanide sorption
  • Radioisotope separation
  • Industrial and medical application