Skip to main content

Disentangling natural vs. anthropogenic induced environmental variability during the Holocene: Marambaia Cove, SW sector of the Sepetiba Bay (SE Brazil)

Abstract

Multiproxy approach based on textural, mineralogical, geochemical, and microfaunal analyses on a 176-cm-long core (SP8) has been applied to reconstruct the Holocene paleoenvironmental changes and disentangling natural vs. anthropogenic variability in Marambaia Cove of the Sepetiba Bay (SE Brazil). Sepetiba Bay became a lagoonal system due to the evolution and development of the Marambaia barrier island during the Holocene and the presence of an extensive river basin. Elemental concentrations from pre-anthropogenic layers from the nearby SP7 core have been used to estimate the baseline elemental concentrations for this region and to determine metals enrichment factors (EF), pollution load index (PLI), and sediment pollution index (SPI). Record of the core SP8 provides compelling evidence of the lagoon evolution differentiating the effects of potentially toxic elements (PTEs) under natural vs. anthropic forcing in the last ~ 9.5 ka BP. The study area was probably part of coastal sand ridges between ≈ 9.5 and 7.8 ka BP (radiocarbon date). Events of wash over deposited allochthonous material and organic matter between ≈ 8.6 and 7.8 ka. Climatic event 8.2 ka BP, in which the South American Summer Monsoon was intensified in Brazil causing higher rainfall and moisture was scored by an anoxic event. Accumulation of organic matter resulted in oxygen depletion and even anoxia in the sediment activating biogeochemical processes that resulted in the retention of potentially toxic elements (PTEs). After ≈ 7.8 ka BP at the onset of the Holocene sea-level rise, a marine incursion flooded the Marambaia Cove area (previously exposed to subaerial conditions). Environmental conditions became favorable for the colonization of benthic foraminifera. The Foram Stress Index (FSI) and Exp(H’bc) indicate that the environmental conditions turned from bad to more favorable since ≈ 7.8 ka BP, with maximum health reached at ≈ 5 ka BP, during the mid-Holocene relative sea-level highstand. Since then, the sedimentological and ecological proxies suggest that the system evolved to an increasing degree of confinement. Since ≈ 1975 AD, a sharp increase of silting, Cd, Zn, and organic matter also induced by anthropic activities caused major changes in foraminiferal assemblages with a significant increase of Ammonia/Elphidium Index (AEI), EF, and SPI values and decreasing of FSI and Exp(H’bc) (ecological indicators) demonstrating an evolution from “moderately polluted” to “heavily polluted” environment (bad ecological conditions), under variable suboxic conditions. Thus, core SP8 illustrates the most remarkable event of anthropogenic forcing on the geochemistry of the sediments and associated pollution loads and its negative effect on benthic organisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

All data and materials are available in the manuscript and as supplementary materials.

References

  1. Aberner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48(4):605–615. https://doi.org/10.1016/0016-7037(84)90089-9

    Article  Google Scholar 

  2. Alegría H, Martínez-Colón M, Kurt-Karakus P, Brooks G, Hanson L, Birgul A (2016) Historical sediment record and levels of PCBs in sediments and mangroves of Jobos Bay, Puerto Rico. Sci Total Environ 573:1003–1009

    Article  CAS  Google Scholar 

  3. Algeo TJ, Tribovillard N (2009) Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem Geol 268(3–4):211–225. https://doi.org/10.1016/j.chemgeo.2009.09.001

    CAS  Article  Google Scholar 

  4. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 6730305:14. https://doi.org/10.1155/2019/6730305

    CAS  Article  Google Scholar 

  5. Alve E (1991) Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sørfjord, western Norway. J Foraminifer Res 21:1–19. https://doi.org/10.2113/gsjfr.21.1.1

    Article  Google Scholar 

  6. Alves Martins MV, Pereira E, Figueira RCL, Oliveira T, Pinto Simon AFS, Terroso D, Ramalho JCM, Silva L, Ferreira C, Geraldes MC, Duleba W, Rocha F, Rodrigues MA (2019a) Impact of eutrophication on benthic foraminifera in Sepetiba Bay (Rio de Janeiro State, SE Brazil). J Sedimentary Environ 4(4):480–500. https://doi.org/10.12957/jse.2019

    Article  Google Scholar 

  7. Alves Martins MV, Hohenegger J, Frontalini F, Sequeira C, Miranda P, Rodrigues MAC, Duleba W, Laut L, Rocha F (2019b) Foraminifera check list and the main species distribution in the Aveiro Lagoon and Adjacent Continental Shelf (Portugal). J Sedimentary Environ 4(1):1–52. https://doi.org/10.12957/jse.2019.39308

    Article  Google Scholar 

  8. Alves Martins MV, Pinto AFS, Borghi L, Carelli TG, Morlote M, Rey D, Pereira E, Ramalho JCR, Rocha F, Geraldes M, Potratz GL, Duleba W, Reis AT, Guerra JV, Rodrigues MAC (2020) Influence of the Holocene relative sea level on the coastal plain of Sepetiba Bay (Southeast Brazil). J Sedimentary Environ 5(1):35–59. https://doi.org/10.1007/s43217-019-00002-6

    Article  Google Scholar 

  9. Angulo RJ, Lessa GC (1997) The Brazilian sea level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Mar Geol 140:141–166. https://doi.org/10.1016/S0025-3227(97)00015-7

    Article  Google Scholar 

  10. Araújo DF, Peres LGM, Yepez S, Mulholland DS, Machado W, Tonhá M, Garnier J (2017a) Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Compt Rendus Geosci 349:290–298. https://doi.org/10.1016/j.crte.2017.09.007

    Article  Google Scholar 

  11. Araújo DF, Boaventura GR, Machado W, Viers J, Weiss D, Patchineelam SR, Ruiz I, Rodrigues APC, Babinski M, Dantas E (2017b) Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chem Geol 449:226–235. https://doi.org/10.1016/j.chemgeo.2016.12.004

    CAS  Article  Google Scholar 

  12. Armynot du Chatelet E, Bout-Roumazeilles V, Coccioni R, Frontalini F, Francescangeli F, Margaritelli G, Rettori R, Spagnoli F, Semprucci F, Trentesaux A, Tribovillard N (2016) Enironmental control on a land-sea transitional setting: integrated sedimentological, geochemical and faunal approaches. Environ Earth Sci 75(123):1–18. https://doi.org/10.1007/s12665-015-4957-7

    Article  Google Scholar 

  13. Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice lands. Rev Environ Sci Biotechnol 12(4):355–377. https://doi.org/10.1007/s11157-013-9323-1

    CAS  Article  Google Scholar 

  14. Audry S, Blanc G, Schäfer J, Robert S (2007) Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molybdenum and uranium distribution in the Gironde estuary, France. Chem Geol 238:149–167. https://doi.org/10.1016/j.chemgeo.2006.11.006

    CAS  Article  Google Scholar 

  15. Aylagas E, Borja A, Irigoien X, Rodriguez-Ezpeleta N, 2016. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front Mar Sci, 10. https://doi.org/10.3389/fmars.2016.00096

  16. Baeyens W, Mirlean N, Bundschuh J, Winter N, Baisch P, Silva Júnior FMR, Gao Y (2019) Arsenic enrichment in sediments and beaches of Brazilian coastal waters: a review. Sci Total Environ 681:143–154. https://doi.org/10.1016/j.scitotenv.2019.05.126

    CAS  Article  Google Scholar 

  17. Barcellos C, Lacerda LD, Ceradini S (1997) Sediment origin and budget in Sepetiba Bay (Brazil) - an approach based on multi-element analysis. Environ Geol 32:203–209

    Article  Google Scholar 

  18. Barletta M, Lima ARA, Costa MF (2019) Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci Total Environ 651:1199–1218

    CAS  Article  Google Scholar 

  19. Bastos BC, Bassani C, 2012. A questão da expansão portuária como solução para o desenvolvimento econômico: o caso das dragagens e os impactos ambientais na baía de Sepetiba. Simpósio de Excelência em Gestão e Tecnologia, 17 p.

  20. Biscaye P (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. GSA Bull 76(7):803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CAS  Article  Google Scholar 

  21. Boltovskoy E (1965) Los Foraminiferos Recientes: biologia, métodos de estúdio, aplicación oceanográfica. EUDE-BA, Buenos Aires, p 510

    Google Scholar 

  22. Boltovskoy E, Giussani G, Watanabe S, Wright R, 1980. Atlas of benthic shelf foraminifera to the southwest Atlantic. New York, The Hague, 174 p.

  23. Borges HV, Nittrouer CA (2015) The paleo-environmental setting of sepetiba bay, Rio de Janeiro, Brazil, in the late pleistocene: Interpretations from high-resolution seismic stratigraphy. Revista Brasileira de Geofísica 33(3):1–14

  24. Borges HV, Nittrouer CA (2016) Sediment accumulation in Sepetiba Bay during the Holocene: a reflex of the human influence. J Sedimentary Environ 1(1):90–106. https://doi.org/10.12957/jse.2016.21868

    Article  Google Scholar 

  25. Bouchet VMP, Alve E, Rygg B, Telford RJ (2012) Benthic foraminifera provide a promising tool for ecological quality assessment of marine waters. Ecol Indic 23:66–75. https://doi.org/10.1016/j.ecolind.2012.03.011

    CAS  Article  Google Scholar 

  26. Bouchet VMP, Gobervilleb E, Frontalini F (2018) Benthic foraminifera to assess Ecological Quality Statuses in Italian transitional waters. Ecol Indic 84:130–139. https://doi.org/10.1016/j.ecolind.2017.07.055

    Article  Google Scholar 

  27. Brönnimann P, Moura JA, Dias-Brito D (1981a) Estudos Ecológicos na Baía de Sepetiba, Rio de Janeiro, Brasil: Foraminíferos. In: In: Congresso Latino-Americano de Paleontologia. RS, Porto Alegre, pp 75–861

    Google Scholar 

  28. Brönnimann P, Moura JA, Dias-Brito D, 1981b. Foraminíferos da Fácies Mangue da Planície de Maré de Guaratiba, Rio de Janeiro, Brasil. In: Congresso Latino-Americano de Paleontologia, Porto Alegre, RS, pp. 91-861.

  29. Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:398–411. https://doi.org/10.1016/0012-821X(79)90049-9

    Article  Google Scholar 

  30. Bueno C, Figueira R, Ivanoff MD, Toldo Junior EE, Fornaro L, García-Rodríguez FG (2019) A multi proxy assessment of long-term anthropogenic impacts in Patos Lagoon, southern Brazil. J Sedimentary Environ 4(3):276–290. https://doi.org/10.12957/jse.2019.44612

    Article  Google Scholar 

  31. Calvo-Marcilese L, Pratolongo P (2009) Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. Rev Esp Micropaleontol 41:315–332

    Google Scholar 

  32. Carelli SG, Roncarati H, Nascimento DN, Geraldes MC (2011) Síntese da evolução Geológica Cenozoica da Baía de Sepetiba e Restinga de Marambaia, Sul do Estado do Rio de Janeiro. XIII ABEQUA Congress – The South American Quaternary: Challenges and Perspectives.

  33. Castro JWA, Suguio K, Seoane JCS, Cunha AM, Dias FF (2014) Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. An Acad Bras Cienc 86(2):671–683. https://doi.org/10.1590/0001-3765201420140007

    Article  Google Scholar 

  34. Castro RO, Silva ML, Araújo FV (2018) Review on microplastic studies in Brazilian aquatic ecosystems. Ocean Coast Manag 165:385–400. https://doi.org/10.1016/j.ocecoaman.2018.09.013

    Article  Google Scholar 

  35. Chakravarty R, Banerjee PC (2008) Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles 12:279–284. https://doi.org/10.1007/s00792-007-0128-4

    CAS  Article  Google Scholar 

  36. Chen H-F, Yeh P-Y, Song S-R, Hsu S-C, Yang T-N, Wang Y, Chi Z, Lee T-Q, Chen M-T, Cheng C-L, Zou J, Chang Y-P (2013) The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. J Asian Earth Sci 73:31–38. https://doi.org/10.1016/j.jseaes.2013.04.017

  37. Cheng H, Fleitmann D, Edwards LR, Wang X, Cruz FW, Auler AS, Mangini A, Wang Y, Kong X, Burns SJ, Matter A (2009) Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37:1007–1010. https://doi.org/10.1130/G30126A.1

  38. Coates DR (ed) (1973) Coastal geomorphology. State University of New York Publications in Geomorphology, Binghamton, p 404

    Google Scholar 

  39. Coccioni R (2000) Benthic foraminifera as bioindicators of heavy metal pollution – a case study from the Goro Lagoon (Italy). In: Martin RE (ed) Environmental micropaleontology: the application of microfossils to environmental geology. Kluwer Academic/Plenum Publishers, New York, pp 71–103

    Chapter  Google Scholar 

  40. CONAMA – Conselho Nacional do Meio Ambiente (2004). Resolução N° 344, de 25 de Março de 2004, Publicada no DOU n° 087, de 07/05/2004, pp. 56-57.

  41. Copeland G, Monteiro T, Couchc S, Borthwickd (2003) Water quality in Sepetiba Bay, Brazil. Mar Environ Res 55:385–408. https://doi.org/10.1016/S0141-1136(02)00289-1

    CAS  Article  Google Scholar 

  42. Correia M, Lee JJ (2000) Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis 29(4):343–355

    Google Scholar 

  43. Costa Santos CS, Dias FF, Franz B, Santos PR, Rodrigues T, Vargas R, Américo dos Santos C (2019) Relative sea level rise effects at the Marambaia Barrier Island and Guaratiba Mangrove: Sepetiba Bay (SE Brazil). J Sedimentary Environ 4(3):249–262. https://doi.org/10.12957/jse.2019.44397

    Article  Google Scholar 

  44. Costa MF, Ivar do Sul JA, Santos-Cavalcanti JS, Araújo MCB, Spengler A, Tourinho TS (2010) Small and microplastics on the strandline: snapshot of a Brazilian beach. Environ Monit Assess 168:299–304. https://doi.org/10.1007/s10661-009-1113-4

    Article  Google Scholar 

  45. Culver SJ (1990) Benthic foraminifera of Puerto Rican mangrove-lagoon systems: potential for paleoenvironmental interpretations. Palaios 5(1):34–51

    Article  Google Scholar 

  46. Cunha CLN, Rosman PCC, Monteiro TCN, 2001. Caracterização da Circulação Bidimensional da Baía de Sepetiba. In: XIV Simpósio Brasileiro de Recursos Hídricos e do V Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa. Aracaju-SE: ABRH, vol. 1, p. 151-151.

  47. Cunha CLN, Rosman PCC, Ferreira AP, Monteiro TCN (2006) Hydrodynamics and water quality models applied to Sepetiba Bay. Cont Shelf Res 26:1940–1953. https://doi.org/10.1016/j.csr.2006.06.010

    Article  Google Scholar 

  48. Cusminsky GC, Martínez D, Bernasconi E (2006) Foraminíferos y ostrácodos de sedimentos recientes del estuario de Bahía Blanca, Argentina. Rev Esp Micropaleontol 38:395–410

    Google Scholar 

  49. Dadalto TP, (2017). arquitetura estratigráfica e evolução geológica da Restinga da Marambaia (RJ). PhD thesis, Universidade Federal Fluminense, Niterói – RJ, Brazil, 273 p.

  50. Dantas M (2000) Geomorfologia do Estado do Rio de Janeiro. Ministério De Minas e Energia, Secretaria de Minas e Metalurgia. CPRM – Serviço Geológico do Brasil, Brasília. https://doi.org/10.13140/RG.2.2.32582.57923

    Book  Google Scholar 

  51. Debenay J-P, Eichler BB, Duleba W, Bonetti C, Eichler-Coelho P (1998) Water stratification in coastal lagoons: its influence on foraminiferal assemblages in two Brazilian lagoons. Mar Micropaleontol 35:67–98. https://doi.org/10.1016/S0377-8398(98)00011-5

    Article  Google Scholar 

  52. Debenay J-P, Duleba W, Bonetti C, Melo-E-Souza SH, Eichler BB (2001a) Pararotalia cananeiaensis n. sp., indicator of marine influence and water circulation in Brazilian coastal and paralic environments. J Foraminifer Res 31:152–163

    Article  Google Scholar 

  53. Debenay JP, Geslin E, Eichler BB, Duleba W, Sylvestre F, Eichler P (2001b) Foraminiferal assemblages in a hypersaline lagoon, Araruama (R.J.) Brazil. J Foraminifer Res 31(2):133–151. https://doi.org/10.2113/0310133

    Article  Google Scholar 

  54. Dias MI, Prudêncio MI (2008) On the importance of using scandium to normalize geochemical data preceding multivariate analyses applied to archaeometric pottery studies. Microchem J 88:136–141. https://doi.org/10.1016/j.microc.2007.11.009

    CAS  Article  Google Scholar 

  55. Dias-Brito D, Moura J, Wurding N (1988) Relationships between ecological models based on ostracodes and foraminifers from Sepetiba Bay (Rio de Janeiro – Brazil). In: Hanai, T. et al. (ed.). Evolutionary biology of Ostracoda: its fundamentals and applications. Dev Paleontol Stratrigraphy 11:467–485

    Article  Google Scholar 

  56. Díaz Morales SJ, Guerra JV, Nunes MAS, Souza AM, Geraldes MC (2019) Evaluation of the environmental state of the western sector of Sepetiba Bay (SE Brazil): trace metal contamination. J Sedimentary Environ 4(2):174–188. https://doi.org/10.12957/jse.2019.43764

    Article  Google Scholar 

  57. Dimiza MD, Triantaphyllou MV, Koukousioura O, Hallock P, Simboura N, Karageorgis AP, Papathanasiou E (2016) The Foram Stress Index: a new tool for environmental assessment of soft-bottom environments using benthic foraminifera. A case study from the Saronikos Gulf, Greece, Eastern Mediterranean. Ecol Indic 60:611–621. https://doi.org/10.1016/j.ecolind.2015.07.030

    Article  Google Scholar 

  58. Dolven JK, Alve E, Rygg B (2013) Defining past ecological status and in situ reference conditions using benthic foraminifera: a case study from the Oslofjord, Norway. Ecol Indidicators 29:219–233. https://doi.org/10.1016/j.ecolind.2012.12.031

    CAS  Article  Google Scholar 

  59. Duleba W, Teodoro AC, Debenay J-P, Alves Martins MV, Gubitoso S, Pregnolato LA, Lerena LM, Prada SM, Bevilacqua JAE (2018) Environmental impact of the largest petroleum terminal in SE Brazil: a multiproxy analysis based on sediment geochemistry and living benthic foraminifera. PLoS One 13(2):e0191446. https://doi.org/10.1371/journal.pone.0191446

    CAS  Article  Google Scholar 

  60. Duque MM, Giacomini J, Wasserman JC (2008) Modelagem hidrodinâmica bidimensional da Baía da Ilha Grande e Baía de Sepetiba visando a subsidiar o plano local de desenvolvimento da maricultura. In: XX Semana Nacional de Oceanografia, 2008, Arraial do Cabo - RJ. CD de Resumos. Rio de Janeiro: Faculdade de Oceanografia – UERJ, p. 1-3.

  61. Elliott M, Quintino V (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54(6):640–645. https://doi.org/10.1016/j.marpolbul.2007.02.003

    CAS  Article  Google Scholar 

  62. Fagel N, 2007. Clay minerals, deep circulation and climate. Developments in marine geology, Volume 1, Elsevier B.V., pp. 139-184. ISSN 1572-5480, https://doi.org/10.1016/S1572-5480(07)01009-3

  63. Ferreira AP, Moreira MDFR (2015) Metals pollution status in surface sediments along the Sepetiba Bay Watershed, Brazil. J Coast Zone Manag. https://doi.org/10.4172/2473-3350.1000404

  64. Fletcher CH, Knebel HJ, Krat J (1990) Holocene evolution of an estuarine coast and tidal wetlands. GSA Bull 102(3):283–297

    Article  Google Scholar 

  65. Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  66. Franzo A, Roscioli C, Patrolecco L, Bzzaro M, Del Negro P, Cibic T (2019) Influence of natural and anthropogenic disturbances of foraminifera and free living nematods in four lagoons of the Po delta system. Estuar Coast Shelf Sci 220:99–110. https://doi.org/10.1016/j.ecss.2019.02.039

    CAS  Article  Google Scholar 

  67. Friederichs YL, Reis AT, Silva CG, Toulemonde B, Guerra JV (2013) Arquitetura Sísmica do Sistema Fluvio-estuarino da Baía de Sepetiba Preservado na Estratigrafia Rasa da Plataforma Interna Adjacente, Rio de Janeiro. Braz J Geol 43(1):124–138. https://doi.org/10.5327/Z2317-48892013000100011

    Article  Google Scholar 

  68. Garcia M, Campos CC, Mota EMT, Santos NMO, Campelo RPS, Prado LCG, Melo Junior M, Soares MO (2020) Microplastics in subsurface waters of the western equatorial Atlantic (Brazil). Mar Pollut Bull 150:110705. https://doi.org/10.1016/j.marpolbul.2019.110705

    CAS  Article  Google Scholar 

  69. Geraldes MC, Motoki A, Costa A, Mota CE, Mohriak WU (2013) Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. Geol Soc Spec Publ 369:1–34

    Article  Google Scholar 

  70. Geraldes MC, Souza AM, Mane MA, Salomão MS, Silva C, Tavares AD, Silva DA, Santos AC, Cézar AD, Almeida PMM (2017) Alkaline complexes as potential areas for installation of repositories of nuclear waste: Cretaceous intrusions in Brazil. J Sedimentary Environ 1(2):111–132. https://doi.org/10.12957/jse.2017.30051

    Article  Google Scholar 

  71. Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JA, Lacerda LD, Wasserman JC (2009) Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: A comparative study. Mar Pollut Bull 59:123–133. https://doi.org/10.1016/j.marpolbul.2009.03.015

    CAS  Article  Google Scholar 

  72. Gutierrez MT, Dadalto TP, Morales SJD, Cortez RHC, Guerra JV, Geraldes MC, 2011. Estudo preliminar da variação de parâmetros físicos da água ao longo de dois ciclos de maré na Baía de Sepetiba (RJ), Brasil XIII Congresso da Associação Brasileira de Estudos do Quaternário ABEQUA.

  73. Hayes MO (1967) Hurricanes as geological agents: case studies of hurricanes Carla, 1961, and Cindy, 1963, University of Texas. Bur Econ Geol Pub 61:56

    Google Scholar 

  74. Hem JD 1985. USGS Water Supply paper n. 2254, 3rd edition. 263 p.

  75. Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G (2017) Bacteria as emerging indicators of soil condition. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02826-16

  76. Hess S, Alve E, Andersen TJ, Joranger T (2020) Defining ecological reference conditions in naturally stressed environments - how difficult is it? Mar Environ Res 156:104885. https://doi.org/10.1016/j.marenvres.2020.104885

    CAS  Article  Google Scholar 

  77. Hippensteel SP, Martin RE (1999) Foraminifera as an indicator of overwash deposits, barrier island sediment supply, and barrier island evolution: Folly Island, South Carolina. Palaeogeogr Palaeoclimatol Palaeoecol 149:115–125

    Article  Google Scholar 

  78. Hofer G, Wagreich M, Neuhuber S (2013) Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geosci Front 4:449–468

    CAS  Article  Google Scholar 

  79. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ (2013) Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):1889–1903

    CAS  Article  Google Scholar 

  80. Ivar do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364. https://doi.org/10.1016/j.envpol.2013.10.036

    CAS  Article  Google Scholar 

  81. Jesus PB, Dias FF, Muniz RA, Macário KCD, Seoane CS, Quattrociocchi DGS, Cassab RCT, Aguilera O, Souza RCCL, Alves EQ, Chanca IS, Carvalho CRA, Araujo JC (2017) Holocene paleo-sea level in southeastern Brazil: an approach based on vermetids shells. J Sedimentary Environ 2(1):35–48. https://doi.org/10.12957/jse.2017.28158

    Article  Google Scholar 

  82. Jorissen FJ (1999) Benthic foraminiferal microhabitats below the sediment-water interface. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic Publishers, Boston, pp 191–179

    Google Scholar 

  83. Jorissen F, Nardelli MP, Almogi-Labin A, Barras C, Bergamin L, Bicchi E, El Kateb A, Ferraro L, McGann M, Morigi C, Romano E, Sabbatini A, Schweizer M, Spezzaferri S (2018) Developing Foram-AMBI for biomonitoring in the Mediterranean: species assignments to ecological categories. Mar Micropaleontol 140:33–45. https://doi.org/10.1016/j.marmicro.2017.12.006

    Article  Google Scholar 

  84. Krumbein WC, Pettijohn F (1938) Manual of sedimentary petrology. Appleton Century-Crofts, New York

    Google Scholar 

  85. Kuniansky EL, and Rodríguez JM, 2010. Effects of changes in irrigation practices and aquifer development on groundwater discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. U.S. Geological Survey Scientific Investigations Report 2010-5022, 106p.

  86. Lacerda LD, Pfeiffer WC, Fiszman M (1987) Heavy metal distribution, availability and fate in Sepetiba Bay, SE Brazil. Sci Total Environ 65:163–173. https://doi.org/10.1016/0048-9697(87)90169-0

    Article  Google Scholar 

  87. Lacerda LD, Marins RV, Paraquetti HHM, Mounier S, Benaim J, Fevrier D (2001) Mercury distribution and reactivity in waters of a subtropical coastal lagoon, Sepetiba Bay, SE Brazil. J Braz Chem Soc 12(1):93–98. https://doi.org/10.1590/S0103-50532001000100013

    CAS  Article  Google Scholar 

  88. Lai MY, Shen PP, Zhao Z, Zhou H, Gu JD (2005) Concentrations of heavy metals in the benthic microgastropods Sermyla riqueti and Stenothyra devalis at the Mai Po Inner Deep Bay Ramsar site of Hong Kong. Bull Environ Contam Toxicol 74(6):1065–1071. https://doi.org/10.1007/s00128-005-0689-9

    CAS  Article  Google Scholar 

  89. Lançone RB, Duleba W, Mahiques MM (2005) Dinâmica de fundo da enseada do flamengo, Ubatuba, Brasil, inferida a partir da distribuição espacial, morfometria e tafonomia de foraminíferos. Revista Brasileira de Paleontologia 8(3):181–192

    Article  Google Scholar 

  90. Larson RA, Brooks GR, Devine B, Schwing PR, Holmes CW, Jilert T, Reichart G-J (2015) Elemental signature of terrigenous sediment runoff as recorded in coastal salt ponds: US Virgin Islands. Appl Geochem 63:573–585. https://doi.org/10.1016/j.apgeochem.2015.01.008

    CAS  Article  Google Scholar 

  91. Laut LLM, Silva FS, Martins, V., Rodrigues MAC, Mendonça JO, Clemente IMMM, Laut VM, Mentzigen G (2012) Foraminíferos do Complexo Sepetiba/Guaratiba. In: Baía de Sepetiba: Estado da Arte. Rodrigues, M.A.C., Pereira, S.D., Santos, S.B., Rio de Janeiro: Cobã, pp. 115 - 150.

  92. Laut LLM, Martins MVA, Frontalini F, Belart P, Santos VF, Lorini ML, Fortes RR, Silva FS, Vieira SSS, Souza-Filho PWM (2016) Biotic (foraminifera and thecamoebians) and abiotic parameters as proxies for indication of the environmental heterogeneity in Caeté River Estuary, Amazon Coast, Brazil. J Sedimentary Environ 1(1):1–16. https://doi.org/10.12957/jse.2016.21264

    Article  Google Scholar 

  93. Lessa GC, Meyers SR, Marone E (1998) Holocene stratigraphy in the Paranagua Bay estuary, southern Brazil. J Sediment Res 68(6):1060–1076. https://doi.org/10.2110/jsr.68.1060

    Article  Google Scholar 

  94. Loeblich AR Jr, Tappan H, (1964). Sarcodina, chiefly Thecamoebians and Foraminiferida. In: R. C. Moore (Ed.), Treatise on invertebrate paleontology, Geological Society of America, vol. 1, pp. 1- 510, vol. 2, pp. 511- 900, University of Kansas Press.

  95. Loeblich AR, Tappan H (1988) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, 970 pp

    Book  Google Scholar 

  96. Loring DH (1988) Normalization of heavy metal data. Report of the 75th Statutory Meeting of WGMS in Relation to Pollution, Annex 2 edn. ICES Publications, Copenhagen, pp 19–42

    Google Scholar 

  97. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32:238–282. https://doi.org/10.1016/0012-8252(92)90001-A

    Article  Google Scholar 

  98. Lu B, Li T, Yu X, Chang F, Nan Q (2011) Redox conditions in sediments and during sedimentation in the Ontong Java Plateau, west equatorial Pacific. Chin J Oceanogr Limnol 29:1309–1324

    CAS  Article  Google Scholar 

  99. Macario KD, Alves EQ, Belém AL, Aguilera O, Bertucci T, Tenório MC, Oliveira FM, Chanca IS, Carvalho C, Souza R, Scheel-Ybert R, Nascimento GS, Dias F, Caon J (2018) The marine reservoir effect on the coast of rio de janeiro: deriving ΔR values from fish otoliths and mollusk shells. Radiocarbon 2018:1–18. https://doi.org/10.1017/RDC.2018.23

    CAS  Article  Google Scholar 

  100. Magalhães VF, Pfeiffer WC (1995) Arsenic concentration in sediments near a metallurgical plant (Sepetiba Bay, Rio de Janeiro, Brazil). J Geochem Explor 52(1–2):175–181

    Article  Google Scholar 

  101. Magurran AE (1988) Ecological diversity and its measurement. University Press, Princeton

    Book  Google Scholar 

  102. Marques AN Jr, Monna F, Silva Filho EV, Fernex FE, Simões Filho FFL (2006) Apparent discrepancy in contamination history of a sub-tropical estuary evaluated through 210Pb profile and chronostratigraphical markers. Mar Pollut Bull 52:532–539. https://doi.org/10.1016/j.marpolbul.2005.09.048

    CAS  Article  Google Scholar 

  103. Martínez-Colón M, Hallock P (2010) Preliminary survey on foraminiferal responses to pollutants in Torrecillas Lagoon, Puerto Rico. Caribb J Sci 46(1):106–111. https://doi.org/10.2113/gsjfr.39.4.278

    Article  Google Scholar 

  104. Martínez-Colón M, Hallock P, Green-Ruíz C (2009) Strategies for using shallow-water foraminifers as bioindicators of potentially toxic elements: a review. J Foraminifer Res 39(4):278–299

    Article  Google Scholar 

  105. Martínez-Colón M, Hallock P, Green-Ruíz C, Smoak J (2017) Temporal variability in potentially toxic elements (PTE’s) and benthic foraminifera in an estuarine environment in Puerto Rico. Micropaleontology 63(6):357–381

    Google Scholar 

  106. Martínez-Colón M, Hallock P, Green-Ruíz C, Smoak J (2018) Benthic foraminifera as bioindicators of potentially toxic elements (PTE) pollution: Torrecilla Lagoon, Puerto Rico. Ecol Indicators J 89:516–527. https://doi.org/10.1016/j.ecolind.2017.10.045

    CAS  Article  Google Scholar 

  107. Martins V, Dubert J, Jouanneau J-M, Weber O, Silva EF, Patinha C, Alveirinho Dias JM, Rocha F (2007) A multiproxy approach of the Holocene evolution of shelf–slope circulation on the NW Iberian Continental Shelf. Mar Geol 239:1–18. https://doi.org/10.1016/j.margeo.2006.11.001

    Article  Google Scholar 

  108. Matero ISO, Gregoire LJ, Ivanovic RF, Tindall JC, Haywood AM (2017) The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet Sci Lett 473:205–214. https://doi.org/10.1016/j.epsl.2017.06.011

    Article  Google Scholar 

  109. Mc Granaham G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37. https://doi.org/10.1177/0956247807076960

    Article  Google Scholar 

  110. Miranda LB, Ikeda, Yoshimine I, Castro Filho BM, Pereira Filho N (1977) Note on the occurrence of saline fronts in the Ilha Grande (RJ) region. Boletim do Instuto Oceanográfico 26(2):249–256. https://doi.org/10.1590/S0373-55241977000200003

    Article  Google Scholar 

  111. Miselis JL, Andrews BD, Nicholson RS, Defne Z, Ganju NK, Navoy A (2016) Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: implications for barrier-estuary connectivity. Estuar Coasts 39:916–934. https://doi.org/10.1007/s12237-015-0057-x

    CAS  Article  Google Scholar 

  112. Misumi S, de Barros M, Vilela C, Barth O (2014) Palinologia, Paleoflorística e Aspectos Paleoclimáticos de Sedimentos do Pleistoceno Tardio na Bacia Hidrográfica do Rio Guandu, Rio de Janeiro, Brasil. Anu Inst Geocienc 37:104–114. https://doi.org/10.11137/2014_1_104_114

    Article  Google Scholar 

  113. Molisani MM, Marins RV, Machado W, Paraquetti HHM, Bidone ED, Lacerda LD (2004) Environmental changes in Sepetiba Bay, SE Brasil. Reg Environ Chang 4:17–27

    Article  Google Scholar 

  114. Morrill C, LeGrande AN, Renssen H, Bakker P, Otto-Bliesner BL (2013) Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Clim Past 9:955–968. https://doi.org/10.5194/cp-9-955-2013

    Article  Google Scholar 

  115. Murray JW (1991) Ecology e paleoecology of benthic foraminifera. Logman Scientific & Technical, London, p 397

    Google Scholar 

  116. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, p 426

    Book  Google Scholar 

  117. Nascimento DN, Chaves HAF, Carelli SC, Polivanov H, Geraldes MC (2013) Caracterização paleoambiental utilizando argilas costeiras de Subsuperfície - Estudo de caso: Baía de Sepetiba-RJ. In: Rodrigues MAC, Pereira SD, Bergamaschi S (eds) Interações Homem-Meio nas zonas costeiras: Brasil/Portugal, vol 1, 1ª edn. Corbã, Rio de Janeiro, pp 281–282

  118. Nascimento DN, Salomão MS, Mane MA, Geraldes MC, Alves Martins MV (2019) Marine progression records in the Sepetiba Bay region (RJ-Brazil) by GPR and ground magnetic survey. J Sedimentary Environ 4(4):518–539. https://doi.org/10.12957/jse.2019.47382

    Article  Google Scholar 

  119. Neto JAB, Gaylarde C, Beech I, Bastos AC, Quaresma VS, Carvalho DG (2019) Microplastics and attached microorganisms in sediments of the Vitória bay estuarine system in SE Brazil. Ocean Coast Manag 169:247–253. https://doi.org/10.1016/j.ocecoaman.2018.12.030

    Article  Google Scholar 

  120. Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One 10(3):e0118571. https://doi.org/10.1371/journal.pone.0118571

    CAS  Article  Google Scholar 

  121. Olabarria C (2002) Role of colonization in spatio-temporal patchiness of micrograstropods in coralline turf habitat. J Exp Mar Biol Ecol 274:121–140. https://doi.org/10.1016/S0022-0981(02)00201-0

    Article  Google Scholar 

  122. PARH Guandu (Plano de ação de recursos hídricos da unidade de análise Guandu), (2010). Plano integrado de recursos hídricos da bacia do Rio Doce e dos planos de ações de recursos hídricos para as unidades de planejamento e gestão de recursos hídricos no âmbito da Bacia do Rio Doce. Consórcio ECOPLAN – LUME, Contrato N° 043/2007 – IGAM.

  123. Patchineelam S, Sanders C, Smoak J, Zem R, Oliveira G, Patchineelam S (2011) A historical evaluation of anthropogenic impact in coastal ecosystems by geochemical signatures. J Braz Chem Soc 22:120–125. https://doi.org/10.1590/S0103-50532011000100016

    CAS  Article  Google Scholar 

  124. Pattan JN, Parthiban G, Amonkar A (2019) Productivity controls on the redox variation in the southeastern Arabian Sea sediments during the past 18 kyr. Quat Int 523:1–9. https://doi.org/10.1016/j.quaint.2019.05.034

    Article  Google Scholar 

  125. Pillet L, Vargas C, Pawlowski J (2011) Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist 162(3):394–404. https://doi.org/10.1016/j.protis.2010.10.001

    CAS  Article  Google Scholar 

  126. Pinto AFS, Martins MVA, Rodrigues MAC, Nogueira L, Laut LLM, Pereira E (2016) Late Holocene evolution of the Northeast intertidal region of Sepetiba Bay, Rio de Janeiro (Brazil). J Sedimentary Environ 1(1):107–138. https://doi.org/10.12957/jse.2016.21924

    Article  Google Scholar 

  127. Pinto AFS, Martins MVA, Fonseca MCM, Pereira E, Terroso DL, Rocha F, Rodrigues MAC (2017) Late Holocene closure of a barrier beach in Sepetiba Bay and its environmental impact (Rio de Janeiro, Brazil). J Sedimentary Environ 2(1):65–80. https://doi.org/10.12957/jse.2017.28215

    Article  Google Scholar 

  128. Prazeres M, Martínez-Colón M, Hallock P (2020) Foraminifera as bioindicators of water quality: the FoRAM Index revisited. Environ Pollut 257:113612. https://doi.org/10.1016/j.envpol.2019.113612

    CAS  Article  Google Scholar 

  129. Pregnolato LA, Viana RA, Passos CC, Misailidis ML, Duleba W (2018) Ammonia-Elphidium Index as a proxy for marine pollution assessment, Northeast Brazil. J Sedimentary Environ 3(3):176–186. https://doi.org/10.12957/jse.2018.38001

    Article  Google Scholar 

  130. Ramakrishna A, Gill SS (Eds), 2019. Metabolic adaptations in plants during abiotic stress. CRC Press, Taylor & Francis Group.

  131. Raposo DS, Laut VM, Clemente IMMM, Martins MVA, Frontalini F, Silva FS, Lorini ML, Fortes RR, Laut LLM (2016) Recent benthic foraminifera from the Itaipu Lagoon, Rio de Janeiro (southeastern Brazil). Check List 12(5):1–14. https://doi.org/10.15560/12.5.1959

    Article  Google Scholar 

  132. Reis AT, Amendola G, Dadalto TP, Silva CG, Poço RGT, Guerra JV, Martins V, Cardia RR, Gorini C, Rabineau M (2020) Arquitetura e Evolução Deposicional da Sucessão Sedimentar Pleistoceno Tardio-Holoceno (últimos ~20 ka) da Baía de Sepetiba (RJ). São Paulo, UNESP. Geociências 39(3):695–708 ISSN: 1980-900X

    Article  Google Scholar 

  133. Rico KI, Sheldon ND, Gallagher TM, Chappaz A (2019) Redox Chemistry and Molybdenum Burial in a Mesoproterozoic Lake. Geophys Res Lett 46(11):5871–5878. https://doi.org/10.1029/2019GL083316

    CAS  Article  Google Scholar 

  134. Rodrigues MA, Pereira SD, Araújo-Junior HI, Pereira ONA (2018) Contexto geológico da Baía de Sepetiba, Estado do Rio de Janeiro in: Baía de Sepetiba - Riscos à natureza e aos coletivos humanos na metrópole do Rio de Janeiro. pp. 228, 1ª Ed., Letra Capital.

  135. Rodrigues SK, Machado W, Guerra JV, Geraldes M, Morales S, Vinzóna SB (2020) Changes in Cd and Zn distribution in sediments after closure of an electroplating industry, Sepetiba bay, Brazil. Mar Pollut Bull 161:111758. https://doi.org/10.1016/j.marpolbul.2020.111758

    CAS  Article  Google Scholar 

  136. Roncarati H, Carelli SG (2012) Considerações sobre o Estado da Arte dos Processos Geológicos Cenozóicos Atuantes na Baía de Sepetiba. In: Rodrigues MAC, Pereira SD, Santos SB (eds) Baía de Sepetiba: Estado da Arte. Corbã, Rio de Janeiro, pp 13–36

    Google Scholar 

  137. Sallun AEM, Sallun Filho W, Suguio K, Babinski M, Gioia SMCL, Harlow BA, Duleba W, Oliveira PE, Garcia MJ, Weber CZ, Christofoletti SR, Santos CS, Medeiros VB, Silva JB, Santiago-Hussein MC, Fernandes RS (2012) Geochemical evidence of the 8.2 ka event and other Holocene environmental changes recorded in paleolagoon sediments, southeastern Brazil. Quat Res 77:31–43. https://doi.org/10.1016/j.yqres.2011.09.007

    CAS  Article  Google Scholar 

  138. Schäfer J, Castelle S, Blanc G, Dabrin A, Masson M, Lanceleur L, Bossy C (2010) Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south-west France). Estuar Coast Shelf Sci 90(2):80–92. https://doi.org/10.1016/j.ecss.2010.07.007

    CAS  Article  Google Scholar 

  139. Schmidt GA, LeGrande AN (2005) The Goldilocks abrupt climate change event. Quat Sci Rev 24:1109–1110. https://doi.org/10.1016/j.quascirev.2005.01.015

    Article  Google Scholar 

  140. SEMADS (Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável, Estado do Rio de Janeiro) 2001. Bacias Hidrográficas e Rios Fluminenses. Síntese Informativa por Macrorregião Ambiental. Cooperação Técnica Brasil-Alemanha, Projeto PLANÁGUA SEMADS/GTZ, Rio de Janeiro, 73 p. ISBN 85-87206-10-9

  141. Semensatto-Jr DL, Dias-Brito D (2004) Análise ambiental de uma área parálica no delta do Rio São Francisco, Sergipe-Brasil, com base na sinecologia de foraminíferos e tecamebas (Protista). Revista Brasileira de Paleontologia 7:53–66

    Article  Google Scholar 

  142. Sen Gupta BK, Turner RE, Rabalais NN (1996) Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology 24(3):227–230. https://doi.org/10.1130/0091-7613(1996)024<0227:SODICS>2.3.CO,2

    Article  Google Scholar 

  143. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  144. Silva JB, Duleba W, Sallun AM, Suguio K (2014) Benthic foraminifera as evidence of paleoenvironmental changes between 9400 and 8300 cal YBP at the Juréia-Itatins Ecological Station paleolagoon (SP, Brasil). J Coast Res 30(6):1118–1130. https://doi.org/10.2112/JCOASTRES-D-12-00121.1

    Article  Google Scholar 

  145. Silva MAM, Souza MFL, Abreu PC (2015) Spatial and temporal variation of dissolved inorganic nutrients, and chlorophyll-a in a tropical estuary in northeastern Brazil: dynamics of nutrient removal. Braz J Oceanogr 63(1):1–15. https://doi.org/10.1590/S1679-87592015064506301

    Article  Google Scholar 

  146. Singh M, Müller G, Singh IB (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water Air Soil Pollut 141:25–54. https://doi.org/10.1023/A:1021339917643

    Article  Google Scholar 

  147. Sinha R, Raymahashay BC (2004) Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajsthan, India. Sediment Geol 166:59–71. https://doi.org/10.1016/j.sedgeo.2003.11.021

    CAS  Article  Google Scholar 

  148. Sloss CR, Jones BG, Murray-Wallace CV, Mc-Clennen CE (2005) Holocene sea level fluctations and the evolution of a barrier estuary: Lake Illawarra, New SouthWales, Australia. J Coast Res 21:943–959

    Article  Google Scholar 

  149. Smith CJ, Collins LS, Hayek L-EC (2013) Biogeographic effects of the closing central American seaway on benthic foraminifera of Venezuela. Bull Mar Sci 89(3):921–936

    Google Scholar 

  150. Stevenson MR, Dias-Brito D, Stech JL, Kampel M (1998) How do cold water biota arrive in a tropical bay near Rio de Janeiro, Brazil? Cont Shelf Res 18:1959–1612. https://doi.org/10.1016/S0278-4343(98)00029-6

    Article  Google Scholar 

  151. Stuiver, M., Reimer, P.J., Reimer, R.W., 2020, CALIB 7.1 [WWW program] at http://calib.org, accessed 2020-5-4

  152. Stuvier M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration. Radiocarbon 35:215–230. https://doi.org/10.1017/S0033822200013904

    Article  Google Scholar 

  153. Suguio K, Vieira EM, Barcelo JH, Silva MS (1979) Interpretação ecológica dos foraminíferos de sedimentos modernos da Baía de Sepetiba e adjacencias. Rio de Janeiro. Revista Brasileira de Geociências 9(4):233–247

    Article  Google Scholar 

  154. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627. https://doi.org/10.1007/s002540050473

    CAS  Article  Google Scholar 

  155. Taheri M, Grego M, Riedel B, Vincx M, Vanaverbeke J (2015) Patterns in nematode community during and after experimentally induced anoxia in the northern Adriatic Sea. Mar Environ Res 10:110–123

    Article  CAS  Google Scholar 

  156. Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26:70–81. https://doi.org/10.1016/j.quascirev.2006.07.017

    Article  Google Scholar 

  157. Tinoco IM (1967) Contribuição da sedimentologia e microfauna da Baia de Sepetiba (Estado do Rio de Janeiro). Trabalhos Oceanográficos da Universidade Federal de Pernambuco. Recife 7(8):123–136

    Google Scholar 

  158. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresun 33:566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  159. Trindade MI, Rocha F, Dias MI (2010) Geochemistry and mineralogy of clays from the Algarve Basin, Portugal: a multivariate approach to palaeoenvironmental investigations. Curr Anal Chem 6:43–52

    CAS  Article  Google Scholar 

  160. Tupinambá M, Heilbron M, Duarte BP, Nogueira JR, Valladares C, Almeida J, Silva LGE, Medeiros SR, Almeida CG, Miranda A, Ragatky CD, Mendes J, Ludka I (2007) Geologia da Faixa Ribeira Setentrional: Estado da arte e conexões com a Faixa Araçuaí. Geonomos 15(1):67–79

    Google Scholar 

  161. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72:175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    CAS  Article  Google Scholar 

  162. Vilela CG, Batista DS, Neto JAB, Ghiselli RO (2011) Benthic foraminifera distribution in a tourist lagoon in Rio de Janeiro, Brazil: a response to anthropogenic impacts. Mar Pollut Bull 62(10):2055–2074. https://doi.org/10.1016/j.marpolbul.2011.07.023

    CAS  Article  Google Scholar 

  163. Waśkowska A, Kaminski MA (2019) Pleistocene epilithic foraminifera from the Arctic Ocean. PeerJ 7:e7207. https://doi.org/10.7717/peerj.7207

    Article  Google Scholar 

  164. Wedepohl K (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    CAS  Article  Google Scholar 

  165. Wolanski, E., Day, J.W., Elliott, M., Ramesh, R. (Editors), (2009). Coasts and estuaries: the future. Elsevier.

  166. Zaninetti L, Brönnimann P, Beurlen G, Moura JA, (1976). La mangrove de Guaratiba et la Baie de Sepetiba, Etat de Rio de Janeiro, Bresil: Foraminiferes et ecólogie. Note préliminaire, C.R. des Seances, PSHN Geneve, NS, 11, 39-44

  167. Zaninetti L, Brönnimann P, Beurlen G, Moura JA (1977) La mangrove de Guaratiba et la Baie de Sepetiba, Etat de Rio de Janeiro, Bresil: Foraminiferes et ecólogie. Arch Sci 30(2):161–178

    Google Scholar 

  168. Zhao M-Y, Zheng Y-F (2015) The intensity of chemical weathering: geochemical constraints from marine detrital sediments of Triassic age in South China. Chem Geol 391:111–122. https://doi.org/10.1016/j.chemgeo.2014.11.004

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Dr. Martínez-Colón were provided by the National Science Foundation Geography and Spatial Sciences Program (grant number 1853794). The authors would like to thank the Editor and the anonymous reviewers for the contribution for improving this work. The first author would like to thank her fellowship to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. This paper is a contribution of the projects of Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil, CnPQ (project process # 443662/2018-5) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (Edital PENSA RIO, process # E-26/010.003024/2014). Virginia Martins would like to thank the CNPq and FAPERJ for the research grants (processes # 302676/2019-8 and E-26/202.927/2019, respectively). Brazil. Mauro Geraldes would like to thank the CNPq and FAPERJ for the research grants (processes # 301470/2016-2 and E-26/202.843/2017, respectively). The authors would like to thank the Fundação para a Ciência e a Tecnologia (FCT, Portugal; the strategic project UID/GEO/04035/2019; UIDB/04035/2020) for financial support. Dr. Martínez-Colón were provided by the National Science Foundation Geography and Spatial Sciences Program (grant number 1853794).

Funding

W. Castello received a fellowship by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. This work received financial contributions from Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil, CnPQ (project process # 443662/2018-5), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (Edital PENSA RIO, process # E-26/010.003024/2014) and Fundação para a Ciência e a Tecnologia (FCT, Portugal; the strategic project UID/GEO/04035/2019; UIDB/04035/2020). Virginia Martins received research grants from CNPq and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (processes # 302676/2019-8 and E-26/202.927/2019). Mauro Geraldes received research grants from CNPq and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (processes # 301470/2016-2 and E-26/202.843/2017, respectively).

Author information

Affiliations

Authors

Contributions

All the authors were involved in the work:

Wellen Castelo: data acquisition, performed the experiment analysis, interpretation of data, wrote the paper

Virgínia Martins: data acquisition, analysis or interpretation of data, conceived and designed the experiments, wrote the paper, funding acquisition

Michael Martínez-Colón: wrote the paper

Josefa Guerra: conceived and designed the experiments, wrote the paper

Tatiana Dadalto: data acquisition, performed field trip and sample collections, performed the experiment

Denise Terroso: data acquisition, performed the experiment

Maryane Soares: data acquisition, performed the experiment

Fabrizio Frontalini: investigation, wrote the paper

Wânia Duleba: investigation, wrote the paper

Orangel Antonio Aguilera Socorro: investigation, wrote the paper

Mauro Cesar Geraldes: investigation, funding acquisition

Fernando Rocha: investigation, funding acquisition

Sergio Bergamaschi: investigation

Corresponding author

Correspondence to Maria Virgínia Alves Martins.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Ethical approval

The work follows the stated ethical principles. The work is based on original material and was not and will be not published elsewhere in any form or language (partially or in full), unless the new work concerns an expansion of previous work.

Consent to participate

The authors have permissions for the use of materials and software.

Consent to publish

The authors approved the version to be published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Vedula VSS Sarma

Supplementary Information

ESM 1

(XLSX 12.4 kb)

ESM 2

(XLSX 54.3 kb)

ESM 3

(DOCX 48.1 kb)

ESM 4

(XLSX 92.7 kb)

ESM 5

(XLSX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castelo, W.F.L., Martins, M.V.A., Martínez-Colón, M. et al. Disentangling natural vs. anthropogenic induced environmental variability during the Holocene: Marambaia Cove, SW sector of the Sepetiba Bay (SE Brazil). Environ Sci Pollut Res 28, 22612–22640 (2021). https://doi.org/10.1007/s11356-020-12179-9

Download citation

Keywords

  • Multiproxies
  • Foraminifera
  • Metals
  • Ammonia/Elphidium Index
  • Foram Stress Index
  • Ecological Quality Status