Skip to main content

Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk


Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = − 3.91 kJ/mol and − 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = − 36.74 kJ/mol and − 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.


Download references


National Institute of Technology Durgapur had contributed the funding for the research.

Author information

Authors and Affiliations



TK performed the batch study, kinetic study, isotherm study, thermodynamic study, interpreted the rate of reaction and types of adsorption and was a major contributor in writing the manuscript. SM analyzed the data and wrote the manuscript. RNS designed the experiment and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tuhin Kamilya.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamilya, T., Mondal, S. & Saha, R. Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk. Environ Sci Pollut Res 29, 20017–20034 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: