Skip to main content

Advertisement

Log in

Organopesticides and fertility: where does the link lead to?

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organopesticides (OPs) are a group of various synthetic chemicals prevalently used in agriculture and homestead plantations. OPs were originally developed to remove insects, weeds, and other pests from agricultural fields for improving crop yields. Modern pesticides including organochlorine pesticides, organophosphorus pesticides, and amido-formyl ester are closely related to our lives. Many people are exposed to various OPs during farming practice. OPs can cause adverse effects and provoke serious impacts on normal reproductive functions of humans, resulting in loss of fertility. The effects of OPs in the reproductive system include association with fluctuation in the levels of sex hormones, delayed menstrual cycle, ovarian dysfunction, alteration in ovary weight, changes of follicle growth, altered oocyte feasibility, and changed the quality of spermatogenesis. Current literature clearly states that exposure to various OPs can impair the fertility of women and cause a high risk of reproductive potential. However, investigations on OPs exposure to woman fertility remain scarce. This review highlights effects of exposure to OPs on the fertility of occupational women and mechanisms of action involved in such effects on the reproductive function of women along with their related impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Akkina J, Reif J, Keefe T, Bachand A (2004) Age at natural menopause and exposure to organochlorine pesticides in Hispanic women. J Toxicol Environ Health A 67:1407–1422

    Article  CAS  Google Scholar 

  • Alahmar AT (2019) Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci 12(1):4–18

    Article  CAS  Google Scholar 

  • Al-Shamary NM, Al-Ghouti MA, Al-Shaikh I, Al-Meer SH, Ahmad TA (2016) Evaluation of pesticide residues of organochlorine in vegetables and fruits in Qatar: statistical analysis. Environ Monit Assess 188(3):198

    Article  Google Scholar 

  • Axmon A, Rylander L, Strömberg U, Hagmar L (2000) Miscarriages and stillbirths in women with a high intake of fish contaminated with persistent organochlorine compounds. Int Arch Occup Environ Health 73(3):204–208

    Article  CAS  Google Scholar 

  • Baligar PN, Kaliwal BB (2001) Induction of gonadal toxicity to female rats after chronic exposure to mancozeb. Ind Health 39(3):235–243

    Article  CAS  Google Scholar 

  • Bindali BB, Kaliwal BB (2002) Anti-implantation effect of carbamate fungicide mancozeb in albino mice. Ind Health 40:191–197

    Article  CAS  Google Scholar 

  • Blanco-Muñoz J, Morales MM, Lacasaña M, Aguilar-Garduño C, Bassol S, Cebrián ME (2010) Exposure to organophosphate pesticides and male hormone profile in floriculturist of the state of Morelos, Mexico. Human Reprod 25(7):1787–1795

    Article  Google Scholar 

  • Boesch P, Weber-Lotfi F, Ibrahim N, Tarasenko V, Cosset A, Paulus F, Lightowlers RN, Dietrich A (2011) DNA repair in organelles: pathways, organization, regulation, relevance in disease and ageing. Biochim Biophys Acta 1813:186–200

    Article  CAS  Google Scholar 

  • Bolognesi C, Creus A, Ostrosky-Wegman P, Marcos R (2011) Micronuclei and pesticide exposure. Mutagenesis 26:19–26

    Article  CAS  Google Scholar 

  • Bretveld RW, Thomas CM, Scheepers PT, Zielhuis GA, Roeleveld N (2006) Pesticide exposure: The hormonal function of the female reproductive system disrupted. Reprod Biol Endocrinol 4:30

    Article  Google Scholar 

  • Briz V, Molina-Molina JM, Sánchez-Redondo S, Fernández MF, Grimalt JO, Olea N, Rodríguez-Farré E, Suñol C (2011) Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan and lindane in primary neuronal cultures. Toxicol Sci 120(2):413–427

    Article  CAS  Google Scholar 

  • Buah-Kwofie A, Humphries MS, Pillay L (2019) Dietary exposure and risk assessment of organochlorine pesticide residues in rural communities living within catchment areas of iSimangaliso World Heritage Site, South Africa. Environ Sci Pollut Res Int 26(17):17774–17786

    Article  CAS  Google Scholar 

  • Bulger WH, Muccitelli RM, Kupfer D (1978) Studies on the in vivo and in vitro estrogenic activities of methoxychlor and its metabolites. Role of hepatic mono-oxygenase in methoxychlor activation. Biochem Pharmacol 27:2417–2423

    Article  CAS  Google Scholar 

  • Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC (2020) Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 20(1):19–32

    CAS  Google Scholar 

  • Carvalho FP, Fowler SW, Readman JW, Mee LD (1992) Pesticide residues in tropical coastal lagoons: the use of 14C-labelled compounds to study cycling and fates of agrochemicals in applications of isotopes and radiation in conservation of the environment. Proceed Int Symposium, IAEA, Vienna, 637–653

  • Carvalho FP, Villeneuve JP, Cattini C, Tolosa I, Montenegro-Guillén S, Lacayo M, Cruz A (2002a) Ecological risk assessment of pesticide residues in coastal lagoons of Nicaragua. J Environ Monit 4:778–787

    Article  CAS  Google Scholar 

  • Carvalho FP, Gonzalez-Farias F, Villeneuve JP, Cattini C, Hernandez-Garza M, Mee LD, Fowler SW (2002b) Distribution, fate and effects of pesticide residues in tropical coastal lagoons of the northwest of Mexico. Environ Technol 23:1257–1270

    Article  CAS  Google Scholar 

  • Chadwick RW, Cooper RL, Chang J, Rehnberg GL, McElroy WK (1988) Possible antiestrogenic activity of lindane in female rats. J Biochem Toxicol 3:147–158

    Article  CAS  Google Scholar 

  • Chang GR (2018) Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. Environ Sci Pollut Res Int 25(8):7699–7708

    Article  CAS  Google Scholar 

  • Chapin RE, Harris MW, Davis BJ, Ward SM, Wilson RE, Mauney MA, Lockhart AC, Smialowicz RJ, Moser VC, Burka LT, Collins BJ (1997) The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam Appl Toxicol 40:138–157

    Article  CAS  Google Scholar 

  • Chevrier J, Eskenazi B, Holland N, Bradman A, Barr DB (2008) Effects of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy. Am J Epidemiol 168(3):298–310

    Article  Google Scholar 

  • Chevrier C, Warembourg C, Gaudreau E, Monfort C, Le Blanc A, Guldner L, Cordier S (2013) Organochlorine pesticides, polychlorinated biphenyls, seafood consumption, and time-to pregnancy. Epidemiology 24:251–260

    Article  Google Scholar 

  • Chiu YH, Williams PL, Gillman MW, Gaskins AJ, Mínguez-Alarcón L, Souter I, Toth TL, Ford JB, Hauser R, Chavarro JE, EARTH Study Team (2018) Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology. JAMA Intern Med 178(1):17–26

  • Cohn BA, Cirillo PM, Wolff MS, Schwingl PJ, Cohen RD, Sholtz RI, Ferrara A, Christianson RE, van den Berg BJ, Siiteri PK (2003) DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 361(9376):2205–2206

    Article  CAS  Google Scholar 

  • Cohn BA, Cirillo PM, Christianson RE (2010) Prenatal DDT exposure and testicular cancer: a nested case-control study. Arch Environ Occup Health 65(3):127–134

    Article  CAS  Google Scholar 

  • Cooper RL, Barrett MA, Goldman JM, Rehnberg GR, McElroy WK, Stoker TE (1994) Pregnancy alterations following xenobiotic-induced delays in ovulation in the female rat. Fundam Appl Toxicol 22:474–480

    Article  CAS  Google Scholar 

  • Costa LG, Olibet G, Murphy SD (1988) Alpha 2-adrenoceptors as atarget for formamidine pesticides: in vitro and in vivo studies in mice. Toxicol Appl Pharmacol 93:319–328

    Article  CAS  Google Scholar 

  • Craig ZR, Hannon PR, Flaws JA (2013) Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor. Toxicol Appl Pharmacol 272:780–786

    Article  CAS  Google Scholar 

  • Cummings AM (1997) Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol 27(4):367–379

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342

    Article  CAS  Google Scholar 

  • EEA (2013) Late lessons from early warnings: science, precaution, innovation. European Environment Agency, Report No 1/2013. EEA, Copenhagen

  • Eldridge JC, Fleenor-Heyser DG, Extrom PC, Wetzel LT, Breckenridge CB, Gillis JH, Luempert LG III, Stevens JT (1994) Short-term effects of chlorotriazines on estrus in female Sprague-Dawley and Fischer 344 rats. J Toxicol Environ Health 43:155–167

    Article  CAS  Google Scholar 

  • Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, Jewell NP (2006) In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Paediatrics 118:233–241

    Article  Google Scholar 

  • Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM (2004) 3rd. XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32:2193–2201

    Article  CAS  Google Scholar 

  • Farr SL, Cooper GS, Cai J, Savitz DA, Sandler DP (2004) Pesticide use and menstrual cycle characteristics among premenopausal women in the Agricultural Health Study. Am J Epidemiol 160:1194–1204

    Article  CAS  Google Scholar 

  • Farr SL, Cai J, Savitz DA, Sandler DP, Hoppin JA, Cooper GS (2006) Pesticide exposure and timing of menopause: the Agricultural Health Study. Am J Epidemiol 163:731–742

    Article  Google Scholar 

  • Gaido KW, Maness SC, McDonnell DP, Dehal SS, Kupfer D, Safe S (2000) Interaction of methoxychlor and related compounds with estrogen receptor α and β, and androgen receptor: structure-activity studies. Mol Pharmacol 58(4):852–858

    Article  CAS  Google Scholar 

  • Gerhard I, Monga B, Krähe J, Runnebaum B (1999) Chlorinated hydrocarbons in infertile women. Environ Res 80(4):299–310

    Article  CAS  Google Scholar 

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58(4):685–704

    Article  CAS  Google Scholar 

  • Gojmerac T, Kartal B, Curic S, Zuric M, Kusevic S, Cvetnic Z (1996) Serum biochemical changes associated with cystic ovarian degeneration in pigs after atrazine treatment. Toxicol Lett 85:9–15

    Article  CAS  Google Scholar 

  • Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530

    CAS  Google Scholar 

  • Grandjean P, Bellinger D, Bergman A, Cordier S, Davey-Smith G, Eskenazi B, Gee D, Gray K, Hanson M, van den Hazel P, Heindel JJ, Heinzow B, Hertz-Picciotto I, Hu H, Huang TT, Jensen TK, Landrigan PJ, McMillen IC, Murata K, Ritz B, Schoeters G, Skakkebaek NE, Skerfving S, Weihe P (2008) The Faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin Pharmacol Toxicol 102(2):73–75

    CAS  Google Scholar 

  • Gray LE Jr, Wolf C, Lambright C, Mann P, Price M, Cooper RL, Ostby J (1999) Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health 15:94–118

    Article  Google Scholar 

  • Gray LE, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L, Veeramachaneni DN, Wilson V, Price M, Hotchkiss A, Orlando E, Guillette L (2001) Effects of environmental anti-androgens on reproductive development in experimental animals. Hum Reprod Update 7:248–264

    Article  CAS  Google Scholar 

  • Greenlee AR, Arbuckle TE, Chyou PH (2003) Risk factors for female infertility in an agricultural region. Epidemiology 14(4):429–436

    Article  Google Scholar 

  • Guo Z, Qiu H, Wang L, Wang L, Wang C, Chen M, Zuo Z (2017) Association of serum organochlorine pesticides concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Chemosphere 171:595e600

    Article  Google Scholar 

  • Haake J, Kelley M, Keys B, Safe S (1987) The effects of organochlorine pesticides as inducers of testosterone and benzo[a]pyrene hydroxylases. Gen Pharmacol 18:165–169

    Article  CAS  Google Scholar 

  • Hart RW, Hall KY, Daniel FB (1978) DNA repair and mutagenesis in mammalian cells. Photochem Photobiol 28:131–155

    Article  CAS  Google Scholar 

  • Hass U, Christiansen S, Axelstad M, Scholze M, Boberg J (2017) Combined exposure to low doses of pesticides causes decreased birth weights in rats. Reprod Toxicol 72:97–105

    Article  CAS  Google Scholar 

  • Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect 114(1):40–50

  • Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopuslaevis). Proc Natl Acad Sci USA 107(10):4612–4617

    Article  CAS  Google Scholar 

  • Hirsch KS, Weaver DE, Black LJ, Falcone JF, MacLusky NJ (1987) Inhibition of central nervous system aromatase activity: a mechanism for fenarimol-induced infertility in the male rat. Toxicol Appl Pharmacol 91(2):235–245

    Article  CAS  Google Scholar 

  • Hu Y, Ji L, Zhang Y, Shi R, Han W, Tse LA, Pan R, Wang Y, Ding G, Xu J, Zhang Q, Gao Y, Tian Y (2018) Organophosphate and pyrethroid pesticide exposures measured before conception and associations with time to pregnancy in Chinese couples enrolled in the Shanghai birth cohort. Environ Health Perspect 126(7):077001

    Article  Google Scholar 

  • Idrovo AJ, Sanìn LH, Cole D, Chavarro J, Cáceres H, Narváez J, Restrepo M (2005) Time to first pregnancy among women working in agricultural production. Int Arch Occup Environ Health 78(6):493–500

    Article  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3-4):90–100

    Article  CAS  Google Scholar 

  • Kaiser J (2000) Endocrine disruptors: Panel cautiously confirms low-dose effects. Science 290:695–697

    Article  CAS  Google Scholar 

  • Kaur K, Kaur R (2018) Occupational pesticide exposure, impaired DNA repair, and diseases. Indian J Occup Environ Med 22:74–81

    Article  Google Scholar 

  • Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM (1995) Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature 375:581–585

    Article  CAS  Google Scholar 

  • Kettles MK, Browning SR, Prince TS, Horstman SW (1997) Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environ Health Perspect 105(11):1222–1227

    Article  CAS  Google Scholar 

  • Kumar R, Uppal RP (1986) Effect of malathion on estrous cycle and reproductive performance of rats. J Environ Biol 7:35–39

    CAS  Google Scholar 

  • Kumar S, Sharma A, Kshetrimayum C (2019) Environmental & occupational exposure & female reproductive dysfunction. Indian J Med Res 150(6):532–545

    Article  CAS  Google Scholar 

  • Latif Y, Sherazi STH, Bhanger MI (2011) Assessment of pesticide residues in commonly used vegetables in Hyderabad, Pakistan. Ecotoxicol Environ Saf 74(8):2299–2303

    Article  CAS  Google Scholar 

  • Lee S, Kim S, Lee HK, Lee IS, Park J, Kim HJ, Lee JJ, Choi G, Choi S, Kim S, Kim SY, Choi K, Kim S, Moon HB (2013a) Contamination of polychlorinated biphenyls and organochlorine pesticides in breast milk in Korea: time-course variation, influencing factors, and exposure assessment. Chemosphere 93(8):1578–1585

    Article  CAS  Google Scholar 

  • Lee HR, Jeung EB, Cho MH, Kim TH, Leung PC, Choi KC (2013b) Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J Cell Mol Med 17(1):1–11

    Article  Google Scholar 

  • Lee JE, Jung HW, Lee YJ, Lee YA (2019) Early-life exposure to endocrine-disrupting chemicals and pubertal development in girls. Ann Pediatr Endocrinol Metab 24(2):78–91

    Article  Google Scholar 

  • Leemans M, Couderq S, Demeneix B, Fini JB (2019) Pesticides with potential thyroid hormone-disrupting effects: A review of recent data. Front Endocrinol 9(10):743

    Article  Google Scholar 

  • Li AJ, Chen Z, Lin TC, Buck Louis GM, Kannan K (2020) Association of urinary metabolites of organophosphate and pyrethroid insecticides, and phenoxy herbicides with endometriosis. Environ Int 136:105456

    Article  CAS  Google Scholar 

  • Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J, Sarno S, Meggio F, Pinna LA, Caldecott KW (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117(17):28

    Google Scholar 

  • Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R (2006) Organic diets significantly lower children's dietary exposure to organophosphorus pesticides. Environ Health Perspect 114(2):260–263

    Article  CAS  Google Scholar 

  • Luderer U, Kesner JS, Fuller JM, Krieg EF Jr, Meadows JW, Tramma SL, Yang H, Baker D (2013) Effects of gestational and lactational exposure to heptachlor epoxide on age at puberty and reproductive function in men and women. Environ Res 121:84–94

    Article  CAS  Google Scholar 

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. Excli J 17:1101–1136

    Google Scholar 

  • Ma J, Lin F, Zhang R, Yu W, Lu N (2004) Differential sensitivity of two green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesticide adjuvants. Ecotoxicol Environ Saf 58(1):61–67

    Article  CAS  Google Scholar 

  • Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, Calderon N, Eskenazi B (2010) Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS study. Environ Health Perspect 118(12):1768–1774

    Article  CAS  Google Scholar 

  • Marques-Pinto A, Carvalho D (2013) Human infertility: are endocrine disruptors to blame? Endocr Connect 2(3):R15–R29

    Article  CAS  Google Scholar 

  • Marsin S, Vidal AE, Sossou M, Ménissier-de Murcia J, Le Page F, Boiteux S, de Murcia G, Radicella JP (2003) Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. J Biol Chem 278:44068–44074

    Article  CAS  Google Scholar 

  • Martenies SE, Perry MJ (2013) Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology 307:66–73

    Article  CAS  Google Scholar 

  • Martinez EM, Swartz WJ (1991) Effects of methoxychlor on the reproductive system of the adult female mouse. 1. Gross and histologic observations. ReprodToxicol 5:139–147

    CAS  Google Scholar 

  • Meeker JD, Maity A, Missmer SA, Williams PL, Mahalingaiah S, Ehrlich S, Berry KF, Altshul L, Perry MJ, Cramer DW, Hauser R (2011) Serum concentrations of polychlorinated biphenyls in relation to in vitro fertilization outcomes. Environ Health Perspect 119(7):1010–1016

    Article  CAS  Google Scholar 

  • Mulder TA, van den Dries MA, Korevaar TIM, Ferguson KK, Peeters RP, Tiemeier H (2019) Organophosphate pesticides exposure in pregnant women and maternal and cord blood thyroid hormone concentrations. Environ Int 132:105124

    Article  CAS  Google Scholar 

  • Nandipati S, Litvan I (2016) Environmental exposures and Parkinson's disease. Int J Environ Res Public Health 13(9):E881

    Article  Google Scholar 

  • Nash RA, Caldecott KW, Barnes DE, Lindahl T (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36(17):5207–5211

    Article  CAS  Google Scholar 

  • Ngoula F, Watcho P, Kenfack A, Manga JN, Defang HF, Pierre K, Joseph T (2014) Effect of dimethoate (an organophosphate insecticide) on the reproductive system and fertility of adult male rat. Am J Pharmacol Toxicol 9(1):75–83

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Pitsos MA (2001) The impact of endocrine disrupters on the female reproductive system. Hum Reprod Update. 7(3):323–330

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    Article  Google Scholar 

  • Oduma JA, Wango EO, Oduor-Okelo D, Makawiti DW, Odongo H (1995) In vivo and in vitro effects of graded doses of the pesticide heptachlor on female sex steroid hormone production in rats. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 111:191–196

    Article  CAS  Google Scholar 

  • Olisah C, Okoh OO, Okoh AI (2020) Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: a two-decade review. Heliyon 6:03518

    Article  Google Scholar 

  • Ostby J, Kelce WR, Lambright C, Wolf CJ, Mann P, Gray LE (1999) The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health 15:80–93

    Article  CAS  Google Scholar 

  • Oyeyiola AO, Fatunsin OT, Akanbi LM, Fadahunsi DE, Moshood O (2017) Human health risk of organochlorine pesticides in foods grown in Nigeria. J Health Pollut 7(15):63–70

    Article  Google Scholar 

  • Palanza P, Parmigiani S, Liu H, vom Saal FS (1999) Prenatal exposure to low doses of the estrogenic chemicals diethylstilbestrol and o,p'-DDT alters aggressive behavior of male and female house mice. Pharmacol Biochem Behav 64:665–672

    Article  CAS  Google Scholar 

  • Pandey AK, Nagpure NS, Trivedi SP, Kumar R, Kushwaha B (2011) Profenofos induced DNA damage in freshwater fish, Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. Mutat Res 726:209–214

    Article  CAS  Google Scholar 

  • Parveen A, Vasanta N (1986) Effects of endosulfan on the nucleic acid content in different tissues of freshwater fish, Clariasbatrachus. Proc 7th Nat Symp Ind Soc Life Sci 31-38

  • Patel S (2017) Disruption of aromatase homeostasis as the cause of a multiplicity of ailments: A comprehensive review. J Steroid Biochem Molecular Biol 168:19–25

    Article  CAS  Google Scholar 

  • Philippe V, Neveen A, Marwa A, Ahmad Basel AY (2021) Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean region and potential impact on public health. Food Control 119:107457

    Article  CAS  Google Scholar 

  • Pizzorno J (2018) Environmental toxins and infertility. Integr Med 17(2):8–11

    Google Scholar 

  • Prakash N, Narayana K, Murthy GS, Moudgal NR, Honnegowda (1992) The effect of malathion, an organophosphate, on the plasma FSH, 17 beta-estradiol and progesterone concentrations and acetylcholinesterase activity and conception in dairy cattle. Vet Hum Toxicol 34:116–119

    CAS  Google Scholar 

  • Priyanka R, Pranay Kumar P, Debojit C, Surajeet B (2017) Pesticides, insecticides and male infertility. Int J Reprod Contracept Obstet Gynecol 6(8):3387–3391

    Article  Google Scholar 

  • Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA (2017) Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J Endocrinol 233(3):R109–R129

    Article  CAS  Google Scholar 

  • Rekhadevi PV, Rahman MF, Mahboob M, Kumari SI, Chinde S, Bhanuramya M, Naresh D, Grover P (2017) Assessment of genotoxicity in female agricultural workers exposed to pesticides. Biomarkers 22(5):446–454

    Article  Google Scholar 

  • Rim KT (2017) Reproductive toxic chemicals at work and efforts to protect workers' health: a literature review. Saf Health Work 8(2):143–150

    Article  Google Scholar 

  • Rishi KK, Grewal S (1995) Chromosome aberration test for the insecticide, dichlorvos, on fish chromosomes. Mutat Res 344(1-2):1–4

    Article  CAS  Google Scholar 

  • Rusiecki JK, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgenson EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic unit. Environ Health Perspect 116:1547–1552

    Article  CAS  Google Scholar 

  • Sanderson JT, Seinen W, Giesy JP, van den Berg M (2000) 2-Chloro-s-triazine herbicides induce aromatase (CYP19) activity inH295R human adrenocortical carcinoma cells: a novel mechanism for estrogenicity? Toxicol Sci 54:121–127

    Article  CAS  Google Scholar 

  • Schmidt CW (2017) Age at menopause: Do chemical exposures play a role? Environ Health Perspect 125(6):062001

  • Sebastian R, Raghavan SC (2015) Exposure to endosulfan can result in male infertility due to testicular atrophy and reduced sperm count. Cell Death Discov 1:15020

    Article  CAS  Google Scholar 

  • Semu E, Tindwa H, Singh BR (2019) Heavy metals and organopesticides: Ecotoxicology, health effects and mitigation options with emphasis on sub-Saharan Africa. J Toxicol Cur Res 3:010

    Google Scholar 

  • Sengupta P, Banerjee R (2014) Environmental toxins: Alarming impacts of pesticides on male fertility. Hum Exp Toxicol 33(10):1017–1039

    Article  Google Scholar 

  • Sharma T, Banerjee BD, Mazumdar D, Tyagi V, Thakur G, Guleria K, Ahmed RS, Tripathi AK (2015) Association of organochlorine pesticides and risk of epithelial ovarian cancer: a case control study. J Reprod Health Med 1:76–82

    Article  Google Scholar 

  • Silvestroni L, Palleschi S (1999) Effects of organochlorine xenobiotics on human spermatozoa. Chemosphere 39:1249–1252

    Article  CAS  Google Scholar 

  • Snedeker SM (2001) Pesticides and breast cancer risk: a review of DDT, DDE, and dieldrin. Environ Health Perspect 109(Suppl 1):35–47

    Article  CAS  Google Scholar 

  • Su Y, Dai Y, Lin Y, Gao X, Han Y, Zhao B (2012) Serum organochlorine pesticide residues and risk of gallstone disease: a case-control study in Xiamen. Annals Epidemiology 22(8):592–597

    Article  Google Scholar 

  • Sutton P, Wallinga D, Perron J, Gottlieb M, Sayre L, Woodruff T (2011) Reproductive health and the industrialized food system: a point of intervention for health policy. Health Aff (Millwood) 30:888–897

    Article  Google Scholar 

  • Tebourbi O, Sakly M, Rhouma KB (2011) Molecular mechanisms of pesticide toxicity K.B. Rhouma (Ed.), Pesticides in the Modern World – Pests Control and Pesticides Exposure and Toxicity Assessment, Intech, pp. 297-332

  • Teodoro M, Briguglio G, Fenga C, Costa C (2019) Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol Rep 6:564–570

    Article  CAS  Google Scholar 

  • Toft G, Axmon A, Giwercman A, Thulstrup AM, Rignell-Hydbom A, Pedersen HS, Ludwicki JK, Zvyezday V, Zinchuk A, Spano M, Manicardi GC, Bonefeld-Jørgensen EC, Hagmar L, Bonde JP, INUENDO (2005) Fertility in four regions spanning large contrasts in serum levels of widespread, persistent organochlorines: a cross-sectional study. Environ Health 4:26

    Article  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  Google Scholar 

  • Toporova L, Balaguer P (2020) Nuclear receptors are the major targets of endocrine-disrupting chemicals. Mol Cell Endocrinol 502:110665

    Article  CAS  Google Scholar 

  • Tully DB, Cox VT, Mumtaz MM, Davis VL, Chapin RE (2000) Six high-priority organochlorine pesticides, either singly or in combination, are nonestrogenic in transfected HeLa cells. Reprod Toxicol 14:95–102

    Article  CAS  Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110(2):125–128

    Article  CAS  Google Scholar 

  • Vinggaard AM, Hnida C, Breinholt V, Larsen JC (2000) Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol Vitro 14:227–234

    Article  CAS  Google Scholar 

  • Vonier PM, Crain DA, McLachlan JA, Guillette LJ Jr, Arnold SF (1996) Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 104:1318–1322

    Article  CAS  Google Scholar 

  • Waliszewski SM, Carvajal O, Infanzon RM, Trujillo P, Aguirre AA, Maxwell M (2004) Levels of organochlorine pesticides in soils and rye plant tissues in a field study. J Agric Food Chem 52:7045–7050

    Article  CAS  Google Scholar 

  • Welch RM, Levin W, Kuntzman R, Jacobson M, Conney AH (1971) Effect of halogenated hydrocarbon insecticides on the metabolism and uterotropic action of estrogens in rats and mice. Toxicol Appl Pharmacol 19:234–246

    Article  CAS  Google Scholar 

  • Wójtowicz AK, Kajta M, Gregoraszczuk EŁ (2007) DDT- and DDE-induced disruption of ovarian steroidogenesis in prepubertal porcine ovarian follicles: a possible interaction with the main steroidogenic enzymes and estrogen receptor beta. J Physiol Pharmacol 58(4):873–885

    Google Scholar 

  • Ye M, Beach J, Martin JW, Senthilselvan A (2017) Pesticide exposures and respiratory health in general populations. J Environ Sci 51:361–370

    Article  CAS  Google Scholar 

  • Zhang J, Zhang J, Liu R, Gan J, Liu J, Liu W (2016) Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environ Sci Technol 50(1):435–443

    Article  CAS  Google Scholar 

Download references

Funding

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Contributions

B.V, U.S, G.R,. I.M.C, and M.T conceived the review idea and focus, drafted the article, and critically revised the article. R.S and M.A.S were involved in the reference collection, drawing figures, and writing the article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Muthu Thiruvengadam.

Ethics declarations

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkidasamy, B., Subramanian, U., Samynathan, R. et al. Organopesticides and fertility: where does the link lead to?. Environ Sci Pollut Res 28, 6289–6301 (2021). https://doi.org/10.1007/s11356-020-12155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12155-3

Keywords

Navigation