Skip to main content

The impact of biomass burning emissions on protected natural areas in central and southern Mexico


Biomass burning from grassland, forests, and agricultural waste results in large amounts of gases and particles emitted to the atmosphere, which affect air quality, population health, crop development, and natural vegetation. Regional atmospheric circulations can transport those plumes of pollutants over hundreds of kilometers, affecting vulnerable environments such as those considered protected natural areas (PNAs). This study evaluates the spatiotemporal distribution of active fires detected, and associated emissions, in central and southern Mexico from satellite data between March and June 2017, to assess the impact of the smoke plumes on protected ecosystems. The arrival of smoke plumes to selected PNAs (both near large urban centers and in remote areas) is assessed using airmass forward trajectories from selected emission sources. The spatial distribution of the remotely derived aerosol optical depth confirms the regional impact of particle emissions from the observed fires on PNAs, particularly in central Mexico. The identified areas of high fire density are also associated with large coarse particle concentrations at the surface. Moreover, there is a significant contribution of organic carbon to the total coarse particle mass, 60% on average. Finally, while most of the impact in ambient pollution is observed in PNAs located close to the regions with active fires in southern Mexico and Central America, the long-range transport of smoke plumes reaching the USA was also confirmed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The databases of satellite data and reanalysis, as well as the HYSPLIT model and the information on the Protected National Areas, are widely available to the community, and the links are presented.

Databases accessed:

VIIRS I-Band 375 m Active Fire Data. Available online: (accessed on 25 January 2019)

MODIS: Moderate Resolution Imaging Spectroradiometer. Available online at: (accessed on 04 January 2019)

Online documents accessed:

Air Resources Laboratory: Global Data Assimilation System (GDAS1) Archive Information. Available online: (accessed on 07 April 2019)

HYSPLIT Basic Tutorial Contents: Multiple trajectories in space. Available online: (accessed on April 07 2019)

HYSPLIT PC Training Seminar: Computational Method. Available online: (accessed on 28 February 2019)

JPSS: Joint Polar Satellite System: (accessed on 04 January 2019).

LAADS DAAC: Aerosol. Available online: (accessed on 25 March 2019)

Giglio L. MODIS Collection 6 Active Fire Product User’s Guide Revision A. Technical Report. Available online: (accessed on 25 January 2019)


  1. Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado M, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072.

    CAS  Article  Google Scholar 

  2. Andreae MO (1993) The influence of tropical biomass burning on climate and the atmospheric environment. In: Oremland RS (Eed) Biogeochemistry of Global Change. Springer, Boston, pp 113–150

    Chapter  Google Scholar 

  3. Brenner L (2006) Áreas naturales protegidas y ecoturismo: el caso de la Reserva de la Biosfera Mariposa Monarca, México. In Relaciones. Estudios de Historia y Sociedad, XXVII 105:237–265 ISSN: 0185-3929

    Google Scholar 

  4. Buchard V, Randles CA, da Silva AM, Darmenov A, Colarco PR, Govindaraju R, Ferrare R, Hair J, Beyersdorf AJ, Ziemba LD, Yu H (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J Clim 30:6851–6872.

  5. Cheng D, Rogan J, Schneider L, Cochrane M (2013) Evaluating MODIS active fire products in subtropical Yucatán forest. Rem Sen Lett 4:455–464.

    Article  Google Scholar 

  6. Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2018) Available online: (accessed on 18 Mar 2019).

  7. CONANP (2016) Ley de Áreas Protegidas y su Reglamento, Decreto No. 4-89 y sus Reformas, Decretos No. 18-89, 110-96 y 111-97 del Congreso de la República de Guatemala. 144 p. Doc. Técnico no. 18-2016.

  8. Crounse JD, DeCarlo PF, Blake DR, Emmons LK, Campos TL, Apel EC, Clarke AD, Weinheimer AJ, McCabe DC, Yokelson RJ et al (2009) Biomass burning and urban air pollution over the Central Mexican Plateau. Atmos Chem Phys 9:4929–4944.

    CAS  Article  Google Scholar 

  9. Crutzen PJ, Andreae MO (1990) biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678.

    CAS  Article  Google Scholar 

  10. Cruz X, Bulnes E (2019) Emission impact of wildfires: El Tepozteco 2016. Atmósfera 32(2):85–93.

    CAS  Article  Google Scholar 

  11. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modelling system for trajectories. Aust Met Mag 47(4):295–308

  12. Dudley N (2008) Guidelines for applying protected area management categories IUCN, ISBN 9782831710860.

  13. Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Rem Sens Environ 178:31–41.

    Article  Google Scholar 

  14. GMAO (2015a) MERRA-2 inst3_2d_gas_Nx: 2d,3-hourly, instantaneous, single-level, assimilation, aerosol optical depth analysis V5.12.4Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC),

  15. GMAO (2015b) MERRA-2 inst3_3d_gas_Nv: 3d, 3-hourly, instantaneous, model-level, assimilation, aerosol mixing ratio analysis increments V5.12.4, 2015b, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC),

  16. Harrison ME, Cheyne SM, Sulistiyanto Y, Rieley JO (2007) Biological effects of smoke from dry-season fires in non-burnt areas of the Sabangau Peat-Swamp Forest, Central Kalimantan, Indonesia. In: Rieley JO, Banks C, Radjagukguk B (eds) The International symposium and workshop on tropical peatland “carbon–climate–human interactions – carbon pools, fire, mitigation, restoration and wise use”, Yogyakarta, Indonesia. EU Carbopeat and Restorpeat Partnership, Gadjah Mada University, Yogyakarta, Indonesia, and University of Leicester, Leicester, pp 107–114

  17. Ichoku C, Ellison L (2014) Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos Chem Phys 14:6643–6667.

    CAS  Article  Google Scholar 

  18. INEGI: Instituto Nacional de Estadística, Geografía e Informática (2010) Available online: (accessed on Mar 27 2019)

  19. Jaffe DA, Wigder NL (2012) Ozone production from wildfires: a critical review. Atmos Environ 51:1–10.

    CAS  Article  Google Scholar 

  20. Jiménez C, Sosa J, Cortés-Calva P, Breceda A, Íñiguez LI, Ortega-Rubio A (2014) México país megadiverso y la relevancia de las áreas naturales protegidas. Invest y Ciencia 22:16–22

    Google Scholar 

  21. Keywood M, Kanakidou M, Stohl A, Dentener F, Grassi G, Meyer CP, Torseth K, Edwards D, Thompson AM, Lohmann U, Burrows J (2013) Fire in the air: biomass burning impacts in a changing climate. Crit Rev Environ Sci Tech 43:40–83.

    CAS  Article  Google Scholar 

  22. Koike T, Watanabe M, Hoshika Y et al (2013) Effects of ozone on forest ecosystems in East and Southeast Asia, 1st edn. Elsevier Ltd.

  23. Koppmann R, Czapiewski KV, Reid JS (2005) A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos Chem Phys Disc 5:10455–10516.

    Article  Google Scholar 

  24. Ladino LA, Raga GB, Baumgardner D (2018) On particle-bound polycyclic aromatic hydrocarbons (PPAH) and links to gaseous emissions in Mexico City. Atmo Environ 194:31–40.

    CAS  Article  Google Scholar 

  25. Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Glob Chang Biol 18:606–616.

    Article  Google Scholar 

  26. Levine JS (1996) Biomass burning and global change. MIT Press, Cambridge

    Google Scholar 

  27. Levine JS, Cofer WR, Cahoon DR, Winstead EL (1995) A driver for global change. Environ Sci Tech 29:120A–125A.

    Article  Google Scholar 

  28. Linzon SN (1966) Damage to eastern white pine by sulfur dioxide, semimature-tissue needle blight, and ozone. J Air Pollut Control Assoc 16:140–144.

    CAS  Article  Google Scholar 

  29. Lyons WA, Nelson TE, Williams ER, Cramer J, Turner T (1998) Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science 282:77–81

    CAS  Article  Google Scholar 

  30. McNeely JA (2005) Protected Areas in 2023: scenarios for an Uncertain Future. The George Wright Forum 22:61–74

    Google Scholar 

  31. Nava R, Jiménez C, Sánchez M, Jiménez A (1998) Listado florístico de la cuenca del río Balsas, México. Polibotánica 9:1–151

    Google Scholar 

  32. Paoletti E (2006) Impact of ozone on Mediterranean forests: a review. Environ Pollut 144:463–474.

    CAS  Article  Google Scholar 

  33. Provençal S, Kishcha P, da Silva AM, Elhacham E, Alpert P (2017) AOD distributions and trends of major aerosol species over a selection of the world’s most populated cities based on the 1st version of NASA’s MERRA Aerosol Reanalysis. Urban Clim 20:168–191

  34. Randles CA, Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R et al (2017) The MERRA-2 aerosol reanalysis, 1980 Onward. Part I: system description and data assimilation evaluation. J Climate 30(17):6823–6850. 634.

  35. Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825.

  36. Richards BL, Taylor OC (1961) Status and redirection of research on the atmospheric pollutants toxic to field grown crops in southern California. J Air Pollut Control Assoc 11:125–128.

  37. Rios B, Raga GB (2018) Spatio-temporal distribution of burned areas by ecoregions in Mexico and Central America. Inter J Rem Sens 39:949–970.

  38. Rios B, Raga GB (2019) Smoke emissions of air pollutants from agricultural fires by ecoregions in Mexico and Central America. Int J Remote Sens 13(3):036509.

  39. Rodriguez-Gomez C, Echeverry G, Jaramillo A, Ladino LA (2021) The negative impact of biomass burning and the Orinoco low-level jet on the air quality of the Orinoco River Basin. Atmosfera (in review)

  40. Sarukhán J, Soberón J (2008) Capital natural de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México ISBN 9786077607021

    Book  Google Scholar 

  41. Servicio de Información Agroalimentaria y Pesquera: Anuario Estadístico de la Producción Agrícola. Available online: (accessed on 27 March 2019).

  42. Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos Environ 105:53–60.

    CAS  Article  Google Scholar 

  43. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Met Soc 96:2059–2077.

    Article  Google Scholar 

  44. Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. For Ecol Manage 144:159–173.

    Article  Google Scholar 

  45. Vermote E, Ellicott E, Dubovik O, Lapyonok T, Chin M, Giglio L, Roberts GJ (2009) An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J Geophys Res Atmos 114:D18205.

    CAS  Article  Google Scholar 

  46. Yokelson RJ, Crounse JD, DeCarlo PF, Karl T, Urbanski S, Atlas E, Campos T, Shinozuka Y, Kapustin V, Clarke AD et al (2009) Emissions from biomass burning in the Yucatan. Atmos Chem Phys 9:5785–5812.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the availability of the public data sets of the European Centre for Medium-Range Weather Forecasts (ECMWF), which was highly helpful for this work, as well as data availability from the Earth Observing System Data and Information System (EOSDIS) at NASA and the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model.


This study was partially funded by grant Consejo Nacional de Ciencia y Tecnología (CONACyT) FC2164-2016. CONACyT is also acknowledged for the doctoral scholarship for BR (#407033) and for the SNI-III assistantship for FTJ.

Author information




FTJ and BR analyzed the fire data, estimated the corresponding emissions, and run the HISPLIT model. AJ analyzed data from MERRA-2 and estimated surface PM10. LL, and GBR initially conceived the study as part of the ADABBOY project as co-PIs of the funded grant; they also contributed the analysis of surface pollutants. All authors participated in the interpretation of the results and in writing the manuscript.

Corresponding author

Correspondence to Graciela B. Raga.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interest.

Ethical approval

All authors declare that this original work has not been published elsewhere. Proper acknowledgment to the work of other has been given, and there is no self-plagiarism in the text. Open access software has been used to develop scripts to process the data.

Consent to participate

All authors participated freely and by their own choice in this study.

Consent to publish

All authors agree to publish this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Gerhard Lammel

Supplementary Information


(DOCX 670 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trujano-Jiménez, F., Ríos, B., Jaramillo, A. et al. The impact of biomass burning emissions on protected natural areas in central and southern Mexico. Environ Sci Pollut Res 28, 17275–17289 (2021).

Download citation


  • Biomass burning
  • Agricultural practices
  • Smoke plume
  • Protected natural areas