Skip to main content

Advertisement

Log in

Calculation of electronic and optical properties of methylammonium lead iodide perovskite for application in solar cell

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organic-inorganic metal halide perovskite materials, i.e., ABX3 (A = methylammonium, B = Pb, X = Cl, Br, I) have been proved to be outstanding for solar energy conversion. They provide a solution to renewable energy problems with good efficiency and cost-effective technology. Here, we report the initial calculations done by solving Kohn-Sham equations by the use of density function theory. The electronic structural and band gap of CH3NH3PbI3 material are obtained by using different exchange-correlation potential (PBE, PBE-sol, GGA). Further, solar cell devices with CH3NH3PbI3 as absorption layer and CdS/TiO2/ZnTe as buffer layer have been modeled; device physics is discussed and performance of solar cell structure is analyzed in terms of short circuit current density, open circuit voltage, efficiency, fill factor, and quantum efficiency. The maximum efficiency of CH3NH3PbI3 solar cell is found to be 19.6% with TiO2 buffer layer, whereas efficiency with ZnTe buffer layer is also comparable which is 19.5%. Further the effect of layer thickness and temperature are analyzed for maximum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agarwal S, Seetharaman M, Kumawat NK, Subbiah AS, Sarkar SK, Kabra D, Namboothiry MAG, Nair PR (2014) On the uniqueness of ideality factor and voltage exponent of perovskite-based solar cells. J Phys Chem Lett 5:4115–4121

    Article  CAS  Google Scholar 

  • Albrecht S, Saliba M, Baena JPC, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin MK, Hagfeldt A, Gratzel M, Rech B (2016) Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ Sci 9:81–88

    Article  CAS  Google Scholar 

  • Baena JPC, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Kandada ARS, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Gratzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8:2928–2934

    Article  Google Scholar 

  • Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an Augmented plane wave local orbitals program for calculating crystal properties.

  • Bodea MA, Sbarcea G, Naik GV, Boltasseva A, Klar TA, Pedarnig JD (2012) Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition. Appl Physics A 110:929–934

    Article  Google Scholar 

  • Burgelman M, Decock K, Khelifi S, Abass A (2013) Advanced electrical simulation of thin film solar cells. Thin Solid Films 535:296

    Article  CAS  Google Scholar 

  • Domanski K, Tress W, Moehl T, Saliba M, Nazeeruddin MK, Gratzel M (2015) Working principles of perovskitephotodetectors: analyzing the interplay between photoconductivity and voltage-driven energy-level alignment. Adv Funct Mater 25:6936–6947

    Article  CAS  Google Scholar 

  • Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015a) Solar cells electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347:967–970

    Article  CAS  Google Scholar 

  • Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng XC, Huang J (2015b) High-gain and low-driving-voltage photodetectors based on organoleadtriiodideperovskites. J Adv Mater 27:1912–1918

    Article  CAS  Google Scholar 

  • Feng ZC (2012) Handbook of zinc oxide and related materials: volume two, devices and nano engineering. CRC Press Taylor and Francis group, Singapore

    Book  Google Scholar 

  • Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14:477–485

    Article  CAS  Google Scholar 

  • Hirasawa M, Ishihara T, Goto T, Uchida K, Miura N (1994) Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3) PbI3. Physica B 201:427–430

    Article  CAS  Google Scholar 

  • Hossaina MS, Aliyua MM, Matina MA, Islama MA, Karimc MR, Razykovb T, Sopianb K, Amina N (2011) Effect of different bsr in front and back contacts for ZnxCd1-xS/CdTe SOLAR CELL. Int J Mech Mater Eng 6:350

    Google Scholar 

  • Imran AM, Amir H, Javaid SS (2015) Perovskite solar cells: potentials, challenges, and opportunities. Int J Photoenergy 2015:1–13. https://doi.org/10.1155/2015/592308

    Article  CAS  Google Scholar 

  • Kavan L, Gratzel M (1995) Highly efficient semiconductor TiO2 photo electrodes prepared by aerosol pyrolysis. Electrochim Acta 4:64–652

    Google Scholar 

  • Kim K-K, Niki S, Oh J-Y, Song J-O, Seong T-Y, Park S-J, Fujita S, Kim S-W (2005) High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing. J Appl Phys 97(6):066103

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A140:1133

    Article  Google Scholar 

  • Koji Y, Yasuhisa K, Keita U, Shusaku G, Tssutomu O, Yoshihiro F (1998) Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull Chem Soc Jpn 71:127–134

    Article  Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka TJ (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  • Kovalenko MV, Protesescu L, Bodnarchuk MI (2017) Properties and potential optoelectronic applications of lead halide perovskitenanocrystals. Science 358:745–750

    Article  CAS  Google Scholar 

  • Kumari S, Verma AS (2014) Buffer layer selection for CuIn1−xGaxSe2 based thin film solar cells. Mater Res Express 1:016202

    Article  CAS  Google Scholar 

  • Li X, Bi D, Yi C, Décoppet JD, Luo J, Zakeeruddin SM, Hagfeldt A, Grätzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62

    Article  CAS  Google Scholar 

  • Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B, Yin L (2019) Pathways toward high-performance inorganic perovskite solar cells: challenges and strategie. J Mater Chem A7:20494–20518

    Article  Google Scholar 

  • Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S (2014) Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett 104:253508

    Article  Google Scholar 

  • Maynard B, Long Q, Schiff EA, Yang M, Zhu K, Kottokkaran R, Abbas H, Dalal VL (2016) Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Appl Phys Lett 108:173505

    Article  Google Scholar 

  • Meyer BK (2011) ZnO: electron and hole mobilities, Landolt-Börnstein-Group III Condensed Matter 44D 610.

  • Minemoto T, Murata M (2014) Devicemodeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J Appl Phys 116:054505

    Article  Google Scholar 

  • Mondal S, Bhattacharyya SR, Mitra P (2013) Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction. Pramana J Phys 80:315–326

    Article  CAS  Google Scholar 

  • Mutalib MA, Ludin NA, Ruzalman N, Ahmad AN, Barrioz V, Sepeai S, Teridi MAM, Su’ait MS, Adib IM, Kamaruzzaman S (2018) Progress towards highly stable and lead-free perovskite solar cells. Mater Renew Sustain Energy. https://doi.org/10.1007/s40243-018-0113-0

  • Mutalikdesai A, Ramasesha SK (2017) Emerging solar technologies: perovskite solar cell. Resonance 22:1061–1083

    Article  CAS  Google Scholar 

  • Olopade MA, Oyebola OO, Adeleke BS (2012) Investigation of some materials as buffer layer in copper zinc tin sulphide (Cu2ZnSnS4) solar cells by SCAPS-1D. Adv Appl Sci Res 3:3396–3400

    CAS  Google Scholar 

  • Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  • Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  • Sajid S, Elseman AM, Ji J, Dou S, Wei D, Huang H, Cui P, Xi P, Chu L, Li Y, Jiang B, Li M (2018) Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett 10:51. https://doi.org/10.1007/s40820-018-0205-5

    Article  CAS  Google Scholar 

  • Saliba M, Zhang W, Burlakov VM, Stranks SD, Sun Y, Ball JM, Johnston MB, Goriely A, Wiesner U, Snaith HJ (2015) Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv Funct Mater 25:5038–5046

    Article  CAS  Google Scholar 

  • Saliba M, Wood SM, Patel JB, Nayak PK, Huang J, Alexander-Webber JA, Wenger B, Stranks SD, Horantner MT, Wang JT, Nicholas RJ, Herz LM, Johnston MB, Morris SM, Snaith HJ, Riede MK (2016) Structured organic-inorganic perovskite toward a distributed feedback laser. Adv Mater 28:923–929

    Article  CAS  Google Scholar 

  • Sherkar TS, Momblona C, Gil-Escrig L, Ávila J, Sessolo M, Bolink HJ, Koster LJA (2017) Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett 2:1214–1222

    Article  CAS  Google Scholar 

  • Singh P, Gautam R, Sharma S, Kumari S, Verma AS (2016) Simulated solar cell device of CuGaSe 2 by using CdS, ZnS and ZnSe buffer layers. Mater Sci Semicond Process 42:288–302

    Article  CAS  Google Scholar 

  • Song TB, Chen Q, Zhou H, Jiang C, Wang H, Yang Y, Liu Y, You, Jing BI, Yang Y (2015) Perovskite solar cells: film formation and properties. J Mater Chem A3:9032–9050

    Article  Google Scholar 

  • Spear WE, Mort J (1963) Electron and hole transport in CdS crystals. Proc Phys Soc 81(1):130–140

  • Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometaltrihalideperovskite absorber. Science 342:341–344

    Article  CAS  Google Scholar 

  • Swank RK (1967) Surface properties of ll-Vl compound. Phys Rev 153:844–849

    Article  CAS  Google Scholar 

  • Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9:687–692

    Article  CAS  Google Scholar 

  • Tyuterev VG (2006) Murnaghan’s equation of state for the electronic ground state energy. Comp Mater Sci 38:350–353

    Article  CAS  Google Scholar 

  • Weber D, Naturforsch Z (1978) CH3NH3SnBrxl3-x x (x = 0-3), a Sn(II)-System withcubic perovskite structure. Eingegangen Am 33:862–865

    Google Scholar 

  • Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347

    Article  CAS  Google Scholar 

  • Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum TC (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13:476–480

    Article  CAS  Google Scholar 

  • Yang X, Xu C, Giles NC (2008) Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent hall measurements. J Appl Phys 104:073727

    Article  Google Scholar 

  • Young KF, Fredrikse HPR (1973) Compilation of the static dielectric constant of inorganic solids. J Phys Chem Ref Data 2:313

    Article  Google Scholar 

  • Yun S, Qin Y, Uhl AR, Vlachopoulos N, Yin M, Li D, Han X, Hagfeldt A (2018) New-generation integrated devices based on dye-sensitized and perovskite solar cells energy and environmental science. Energy Environ Sci 11:476–526

    Article  CAS  Google Scholar 

  • Zabihi F, Tebyetekerwa M, Xu Z, Ali A, Kumi AK, Hui Z, Jose R, Ramakrishna S, Yang S (2019) Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. J Mater Chem A7:26661–26692

    Article  Google Scholar 

  • Zhang W, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ (2013) Enhancement of perovskite-mased solar cells employing core–shell metal nanoparticles. Nano Lett 13:4505–4510

    Article  CAS  Google Scholar 

  • Zhou Q, Jiao D, Fu K, Wu X, Chen Y, Lu J, Yang S (2016) Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells. Sol Energy 123:51–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sarita Kumari calculated solar cell performance parameters with different buffer layers. Arti Meena calculated structural and electronic properties of pervoskite material. Amanpal Sing analyzed the results of solar cell performance and provided insight for the explanation of performance of solar cell with different buffer layers. Ajay Singh Verma calculated optical properties of pervoskite material and analyzed the results obtained through WIEN2k code.

Corresponding author

Correspondence to Sarita Kumari.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Meena, A., Singh, A. et al. Calculation of electronic and optical properties of methylammonium lead iodide perovskite for application in solar cell. Environ Sci Pollut Res 28, 25382–25389 (2021). https://doi.org/10.1007/s11356-020-12087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12087-y

Keywords

Navigation