Skip to main content

Advertisement

Log in

Airway hyperresponsiveness development and the toxicity of PM2.5

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bae DJ, Jun JA, Chang HS, Park JS, Park CS (2020) Epigenetic changes in asthma: role of DNA CpG methylation. Tuberc Respir Dis (Seoul) 83(1):1–13

    Article  Google Scholar 

  • Baraldi E, Ghiro L, Piovan V, Carraro S, Ciabattoni G, Barnes PJ, Montuschi P (2003) Increased exhaled 8-isoprostane in childhood asthma. Chest 124(1):25–31

    Article  CAS  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645

    Article  CAS  Google Scholar 

  • Belsky DW, Shalev I, Sears MR, Hancox RJ, Lee Harrington H, Houts R, Moffitt TE, Sugden K, Williams B, Poulton R et al (2014) Is chronic asthma associated with shorter leukocyte telomere length at midlife? Am J Respir Crit Care Med 190(4):384–391

    Article  Google Scholar 

  • Bezemer GF, Bauer SM, Oberdorster G, Breysse PN, Pieters RH, Georas SN, Williams MA (2011) Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun 3(2):150–166

    Article  CAS  Google Scholar 

  • Birch J, Barnes PJ, Passos JF (2018) Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther 183:34–49

    Article  CAS  Google Scholar 

  • Brosseau C, Durand M, Colas L, Durand E, Foureau A, Cheminant MA, Bouchaud G, Castan L, Klein M, Magnan A et al (2018) CD9+ regulatory B cells induce T cell apoptosis via IL-10 and are reduced in severe asthmatic patients. Front Immunol 9:3034

    Article  CAS  Google Scholar 

  • Cao X, Wang M, Li J, Luo Y, Li R, Yan X, Zhang H (2020) Fine particulate matter increase airway hyperresponsiveness through kallikrein-bradykinin pathsway. Ecotoxicology and Environmental Safety 195:110491

    Article  CAS  Google Scholar 

  • Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, Boulet LP, Hamid Q (2003) Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 111(6):1293–1298

    Article  CAS  Google Scholar 

  • Che W, Manetsch M, Quante T, Rahman MM, Patel BS, Ge Q, Ammit AJ (2012) Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells. Biochim Biophys Acta 1823:1658–1665

    Article  CAS  Google Scholar 

  • Che W, Parmentier J, Seidel P, Manetsch M, Ramsay EE, Alkhouri H, Ge Q, Armour CL, Ammit AJ (2014) Corticosteroids inhibit sphingosine1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1. Am J Respir Cell Mol Biol 50:358–368

    Article  Google Scholar 

  • Chen ZH, Wu YF, Wang PL, Wu YP, Li ZY, Zhao Y, Zhou JS, Zhu C, Cao C, Mao YY et al (2016) Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 12(2):297–311

    Article  CAS  Google Scholar 

  • Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV (2018) The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 223(1):101–111

    Article  CAS  Google Scholar 

  • Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 35(1):89–96

    Article  CAS  Google Scholar 

  • Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30(4):576–587

    Article  CAS  Google Scholar 

  • Churg A, Brauer M, Carmen Avila-Casado M, Fortoul TI, Wright JL (2003) Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 111(5):714–718

    Article  CAS  Google Scholar 

  • Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468

    Article  CAS  Google Scholar 

  • Dagher Z, Garcon G, Billet S, Verdin A, Ledoux F, Courcot D, Aboukais A, Shirali P (2007) Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 27(3):284–290

    Article  CAS  Google Scholar 

  • Davis JS, Sun M, Kho AT, Moore KG, Sylvia JM, Weiss ST, Lu Q, Tantisira KG (2017) Circulating microRNAs and association with methacholine PC20 in the Childhood Asthma Management Program (CAMP) cohort. PLoS One 12(7):e0180329

    Article  Google Scholar 

  • Dekruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT et al (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184(4):1918–1930

    Article  CAS  Google Scholar 

  • Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W (2013) PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro 27(6):1762–1770

    Article  CAS  Google Scholar 

  • Deng Y, Zhang Y, Wu H, Shi Z, Sun X (2017) Knockdown of FSTL1 inhibits PDGF BB induced human airway smooth muscle cell proliferation and migration. Mol Med Rep 15(6):3859–3864

    Article  CAS  Google Scholar 

  • Deretic V, Klionsky DJ (2018) Autophagy and inflammation: a special review issue. Autophagy 14(2):179–180

    Article  Google Scholar 

  • Diehl S, Twardzik CC, Rounds L, Serfling E, Davis RJ, Anguita W, Weiss L, Palmetshofer A, T J, Rincón M (2002) Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation. J Exp Med 196(1):39–49

    Article  CAS  Google Scholar 

  • Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, Xu Y (2016) H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ Toxicol Pharmacol 42:170–175

    Article  CAS  Google Scholar 

  • Dou C, Zhang J, Qi C (2018) Cooking oil fume-derived PM2.5 induces apoptosis in A549 cells and MAPK/NF-кB/STAT1 pathway activation. Environ Sci Pollut Res Int 25(10):9940–9948

    Article  CAS  Google Scholar 

  • Draijer C, Boorsma CE, Robbe P, Timens W, Hylkema MN, Ten Hacken NH, van den Berge M, Postma DS, Melgert BN. 2017. Human asthma is characterized by more IRF5+ M1 and CD206+ M2 macrophages and less IL-10+ M2-like macrophages around airways compared with healthy airways. J Allergy Clin Immunol 140: 280–283.e3.

  • Draijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN (2018) Dual role of YM1+ M2 macrophages in allergic lung inflammation. Sci Rep 8(1):5105

    Article  Google Scholar 

  • Eiymo Mwa Mpollo MS, Brandt EB, Shanmukhappa SK, Arumugam PI, Tiwari S, Loberg A, Pillis D, Rizvi T, Lindsey M, Jonck B et al (2016) Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. J Clin Invest 126(2):571–584

    Article  Google Scholar 

  • El Biaze M, Boniface S, Koscher V, Mamessier E, Dupuy P, Milhe F, Ramadour M, Vervloet D, Magnan A (2003) T cell activation from atopy to asthma: more a paradox than a paradigm. Allergy 58(9):844–853

    Article  Google Scholar 

  • El-Kady MM, Girgis ZI, Abd El-Rasheed EA, Shaker O, Attallah MI, Soliman AA (2016) Role of selective blocking of bradykinin receptor subtypes in attenuating allergic airway inflammation in guinea pigs. Eur J Pharmacol 788:152–159

    Article  CAS  Google Scholar 

  • Fan J, Li S, Fan C, Bai Z, Yang K (2016) The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci and Pollut Res Int 23(1):843–850

    Article  CAS  Google Scholar 

  • Fernando IPS, Jayawardena TU, Kim HS, Lee WW, Vaas APJP, De Silva HIC, Abayaweera GS, Nanayakkara CM, Abeytunga DTU, Lee DS et al (2019) Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex J. Agardh). Environ Res 172:150–158

    Article  CAS  Google Scholar 

  • Francisco-Garcia AS, Garrido-Martín EM, Rupani H, Lau LCK, Martinez-Nunez RT, Howarth PH, Sanchez-Elsner T (2019) Small RNA species and microRNA profiles are altered in severe asthma nanovesicles from broncho alveolar lavage and associate with impaired lung function and inflammation. Noncoding RNA 5(4):51

    Article  CAS  Google Scholar 

  • Fu Q, Lyu D, Zhang L, Qin Z, Tang Q, Yin H, Zhou W, Yuan X, Ma Y, Hu M et al (2017) Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ Pollut 227:314–322

    Article  CAS  Google Scholar 

  • Gilmour PS, Rahman I, Donaldson K, MacNee W (2003) Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol 284(3):L533–L540

    Article  CAS  Google Scholar 

  • Gomez JL (2019) Epigenetics in Asthma. Curr Allergy Asthma Rep 19(12):56

    Article  Google Scholar 

  • Govindaraju V, Michoud MC, Al-chalabi M, Ferraro P, Powell WS, Martin JG (2006) Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 291(5):C957–C965

    Article  CAS  Google Scholar 

  • Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

  • Guo ZQ, Dong WY, Xu J, Hong ZC, Zhao RW, Deng CR, Zhuang GS, Zhang RX (2017) T-helper type 1-T-helper type 2 shift and nasal remodeling after fine particulate matter exposure in a rat model of allergic rhinitis. Am J Rhinol Allergy 31(3):148–155

    Article  Google Scholar 

  • Hadj Salem I, Dubé J, Boulet LP, Chakir J (2015) Telomere shortening correlates with accelerated replicative senescence of bronchial fibroblasts in asthma. Clin Exp Allergy 45(11):1713–1715

    Article  CAS  Google Scholar 

  • Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90(4):761–769

    Article  CAS  Google Scholar 

  • Hansel NN, McCormack MC, Belli AJ, Matsui EC, Peng RD, Aloe C, Paulin L, Williams DL, Diette GB, Breysse PN (2013) In-home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(10):1085–1090

    Article  Google Scholar 

  • Hardyman MA, Wilkinson E, Martin E, Jayasekera NP, Blume C, Swindle EJ, Gozzard N, Holgate ST, Howarth PH, Davies DE, et al. 2013. TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol 132(3):665-675.e8.

  • Hayashi H, Kawakita A, Okazaki S, Yasutomi M, Murai H, Ohshima Y (2013) IL-17A/F modulates fibrocyte functions in cooperation with CD40-mediated signaling. Inflammation. 36(4):830–838

    Article  CAS  Google Scholar 

  • He M, Ichinose T, Yoshida S, Ito T, He C, Yoshida Y, Arashidani K, Takano H, Sun G, Shibamoto T (2017) PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. J Appl Toxicol 37(10):1203–1218

    Article  CAS  Google Scholar 

  • Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M (2017) Disease relevant modifications of the methylome and transcriptome by particulate matter (PM2.5) from biomass combustion. Epigenetics 12(9):779–792

    Article  Google Scholar 

  • Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, Deng C (2016) Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med 239(2):117–125

    Article  CAS  Google Scholar 

  • Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: A crosstalk mechanism between autophagy and apoptosis. Autophagy 6(7):891–900

    Article  CAS  Google Scholar 

  • Huang KL, Liu SY, Chou CC, Lee YH, Cheng TJ (2017) The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One 12(2):e0173158

    Article  Google Scholar 

  • Huang Q, Zhang J, Peng S, Tian M, Chen J, Shen H (2014) Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. J Appl Toxicol 34(6):675–687

    Article  Google Scholar 

  • Ibba SV, Ghonim MA, Pyakurel K, Lammi MR, Mishra A, Boulares AH (2016) Potential of inducible nitric oxide synthase as a therapeutic target for allergen-induced airway hyperresponsiveness: a critical connection to nitric oxide levels and PARP activity. Mediators Inflamm 2016:1984703

    Article  Google Scholar 

  • Inoue D, Kubo H, Taguchi K, Suzuki T, Komatsu M, Motohashi H, Yamamoto M (2011) Inducible disruption of autophagy in the lung causes airway hyper-responsiveness. Biochem Biophys Res Commun 405(1):13–18

    Article  CAS  Google Scholar 

  • Issouf M, Vargas A, Boivin R, Lavoie JP (2019) MicroRNA-221 is overexpressed in the equine asthmatic airway smooth muscle and modulates smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 317(6):L748–L757

    Article  CAS  Google Scholar 

  • Jessop F, Hamilton RF, Rhoderick JF, Shaw PK, Holian A (2016) Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol Appl Pharmacol 309:101–110

    Article  CAS  Google Scholar 

  • Jin X, Xue B, Zhou Q, Su R, Li Z (2018) Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. J Toxicol Sci 43(2):101–111

    Article  CAS  Google Scholar 

  • Jin Y, Zhu M, Guo Y, Foreman D, Feng F, Duan G, Wu W, Zhang W (2019) Fine particulate matter (PM2.5) enhances FcεRI-mediated signaling and mast cell function. Cell Signal 57:102–109

    Article  CAS  Google Scholar 

  • Johnson VJ, Yucesoy B, Luster MI (2005) Prevention of IL-1 signaling attenuates airway hyperressponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol 116(4):851–858

    Article  CAS  Google Scholar 

  • Joubert PE, Werneke SW, dela Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML. (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209(5):1029–1047

    Article  CAS  Google Scholar 

  • Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 160(7):3513–3521

    Article  CAS  Google Scholar 

  • Kang JY, Lee SY, Rhee CK, Kim SJ, Kwon SS, Kim YK (2013) Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model. Clin Interv Aging 8:1393–1403

    Article  Google Scholar 

  • Kaur D, Gomez E, Doe C, Berair R, Woodman L, Saunders R, Hollins F, Rose FR, Amrani Y, May R et al (2015) IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy 70(5):556–567

    Article  CAS  Google Scholar 

  • Kerscher B, Barlow JL, Rana BM, Jolin HE, Gogoi M, Bartholomew MA, Jhamb D, Pandey A, Tough DF, van Oosterhout AJM et al (2019) BET bromodomain inhibitor iBET151 impedes human ILC2 activation and prevents experimental allergic lung inflammation. Front Immunol 10:678

    Article  CAS  Google Scholar 

  • Kile ML, Fang S, Baccarelli AA, Tarantini L, Cavallari J, Christiani DC (2013) A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 12(1):47

    Article  CAS  Google Scholar 

  • Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC (2017) Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med 196(3):283–297

    Article  CAS  Google Scholar 

  • Koo JS, Kim YD, Jetten AM, Belloni P, Nettesheim P (2002) Overexpression of mucin genes induced by interleukin-1 beta, tumor necrosis factor-alpha, lipopolysaccharide, and neutrophil elastase is inhibited by a retinoic acid receptor alpha antagonist. Exp Lung Res 28(4):315–332

    Article  CAS  Google Scholar 

  • Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C et al (2015) Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 372(21):1987–1995

    Article  Google Scholar 

  • Kubo M (2017) Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 278(1):162–172

    Article  CAS  Google Scholar 

  • Kuo CH, Hsieh CC, Lee MS, Chang KT, Kuo HF, Hung CH (2014) Epigenetic regulation in allergic diseases and related studies. Asia Pac Allergy 4(1):14–18

    Article  Google Scholar 

  • Kyoh S, Venkatesan N, Poon AH, Nishioka M, Lin TY, Baglole CJ. 2013.Are leukocytes in asthmatic patients aging faster? A study of telomere length and disease severity. J Allergy Clin Immunol132(2):480-2.e2.

  • Gualtieri M, Ovrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, Camatini M, Holme JA (2011) Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res 713(1-2):18–31

    Article  CAS  Google Scholar 

  • Laan M, Prause O, Miyamoto M, Sjöstrand M, Hytönen AM, Kaneko T, Lötvall J, Lindén A (2003) A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-alpha. Eur Respir J 21(3):387–393

    Article  CAS  Google Scholar 

  • Lee EY, Lin J, Noth EM, Hammond SK, Nadeau KC, Eisen EA, Balmes JR. 2017.Traffic-related air pollution and telomere length in children and adolescents living in Fresno, CA: A Pilot Study. J Occup Environ Med 59(5):446-452.

  • Lee EY, Oh SS, White MJ, Eng CS, Elhawary JR, Borrell LN, Nuckton TJ, Zeiger AM, Keys KL, Mak ACY, et al. 2019. Ambient air pollution, asthma drug response, and telomere length in African American youth. J Allergy Clin Immunol 144(3):839-845.e10.

  • Lee HS, Park HW, Song WJ, Jeon EY, Bang B, Shim EJ. 2016.TNF enhance Th2 and Th17 immune responses regulating by IL23 during sensitization in asthma model. Cytokine 79:23-30.

  • Lee J, Kim HS (2019) The role of autophagy in eosinophilic airway inflammation. Immune Netw 19(1):e5

    Article  Google Scholar 

  • Lee KY, Ito K, Hayashi R, Jazrawi EP, Barnes PJ, Adcock IM (2006) NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. J Immunol 176(1):603–615

    Article  CAS  Google Scholar 

  • Li ML, Su XM, Ren Y, Zhao X, Kong LF, Kang J (2020a) HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respir Res 21(1):62

    Article  Google Scholar 

  • Li P, Lang X, Xia S (2019) Elevated expression of microRNA-378 in children with asthma aggravates airway remodeling by promoting the proliferation and apoptosis resistance of airway smooth muscle cells. Exp Ther Med 17(3):1529–1536

    CAS  Google Scholar 

  • Li P, Wang J, Guo F, Zheng B, Zhang X (2020b) A novel inhibitory role of microRNA-224 in particulate matter 2.5-induced asthmatic mice by inhibiting TLR2. J Cell Mol Med 24(5):3040–3052

    Article  CAS  Google Scholar 

  • Li R, Zhao L, Tong J, Yan Y, Xu C (2017) Fine particulate matter and sulfur dioxide coexposures induce rat lung pathological injury and inflammatory responses Via TLR4/p38/NF-kappaB pathway. Int J Toxicol 36(2):165–173

    Article  CAS  Google Scholar 

  • Liu C, Guo H, Cheng X, Shao M, Wu C, Wang S, Li H, Wei L, Gao Y, Tan W et al (2015a) Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget 6(30):29428–29439

    Article  Google Scholar 

  • Liu F, Qu F, Zhang H, Chao L, Li R, Yu F, Guan J, Yan X (2019) The effect and burden modification of heating on adult asthma hospitalizations in Shijiazhuang: a time-series analysis. Respir Res 20(1):122

    Article  Google Scholar 

  • Liu H, Fan X, Wang N, Zhang Y, Yu J (2017a) Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs. J Asthma 54(8):807–817

    Article  CAS  Google Scholar 

  • Liu JN, Suh DH, Trinh HK, Chwae YJ, Park HS, Shin YS (2016) The role of autophagy in allergic inflammation: a new target for severe asthma. Exp Mol Med 48(7):e243

    Article  CAS  Google Scholar 

  • Liu L, Wang LP, He S, Ma Y (2018) Immune homeostasis: effects of chinese herbal formulae and herb-derived compounds on allergic asthma in different experimental models. Chin J Integr Med 24(5):390–398

    Article  Google Scholar 

  • Liu M, Yokomizo T (2015) The role of leukotrienes in allergic diseases. Allergol Int 64(1):17–26

    Article  CAS  Google Scholar 

  • Liu T, Liu Y, Miller M, Cao L, Zhao J, Wu J, Wang J, Liu L, Li S, Zou M et al (2017b) Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma. Am J Physiol Lung Cell Mol Physiol 313(1):L27–L40

    Article  Google Scholar 

  • Liu T, Wu B, Wang Y, He H, Lin Z, Tan J, Yang L, Kamp DW, Zhou X, Tang J et al (2015b) Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells. Mol Med Rep 12(2):1914–1922

    Article  CAS  Google Scholar 

  • Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, Bhatti P, Karr C (2015) Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res 136:505–512

    Article  CAS  Google Scholar 

  • Long F, Jiang H, Yi H, Su L, Sun J (2019) Particulate matter 2.5 induced bronchial epithelial cell injury via activation of 5'-adenosine monophosphate-activated protein kinase-mediated autophagy. J Cell Biochem 120(3):3294–3305

    Article  CAS  Google Scholar 

  • Longhin E, Holme JA, Gualtieri M, Camatini M, Øvrevik J (2018) Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol In Vitro 52:365–373

    Article  CAS  Google Scholar 

  • Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10:63

  • Ma K, Lu N, Zou F, Meng FZ (2019) Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 865:172670

    Article  CAS  Google Scholar 

  • Mahmutovic Persson I, Menzel M, Ramu S, Cerps S, Akbarshahi H, Uller L (2018) IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation. Respir Res 19(1):16

    Article  Google Scholar 

  • Mak JC, Ho SP, Ho AS, Law BK, Cheung AH, Ho JC, Ip MS, Chan-Yeung MM (2013) Sustained elevation of systemic oxidative stress and inflammation in exacerbation and remission of asthma. ISRN Allergy 2013:561831

    Article  Google Scholar 

  • Marcon A, Cerveri I, Wjst M, Antó J, Heinrich J, Janson C, Jarvis D, Leynaert B, Probst-Hensch N, Svanes C et al (2014) Can an airway challenge test predict respiratory diseases? A population-based international study. J Allergy Clin Immunol 133(1):104–110

    Article  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2(6):422–432

    Article  CAS  Google Scholar 

  • Martin LJ, Gupta J, Jyothula SS, Butsch Kovacic M, Biagini Myers JM, Patterson TL, Ericksen MB, He H, Gibson AM, Baye TM et al (2012) Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS ONE 7(4):e33454

    Article  CAS  Google Scholar 

  • McAlinden KD, Deshpande DA, Ghavami S, Xenaki D, Sohal SS, Oliver BG, Haghi M, Sharma P (2019) Autophagy activation in asthma airways remodeling. Am J Respir Cell Mol Biol 60(5):541–553

    Article  CAS  Google Scholar 

  • Melgert BN, ten Hacken NH, Rutgers B, Timens W, Postma DS, Hylkema MN (2011) More alternative activation of macrophages in lungs of asthmatic patients. J Allergy Clin Immunol. 127(3):831–833

    Article  Google Scholar 

  • Murray PJ (2017) Macrophage Polarization. Annu Rev Physiol 79:541–566

    Article  CAS  Google Scholar 

  • Nadeem A, Chhabra SK, Masood A, Raj HG. 2003. Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 111(1):72–78.

  • Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–387

    Article  CAS  Google Scholar 

  • Nakagome K, Nagata M (2018) Involvement and possible role of eosinophils in asthma exacerbation. Front Immunol 9:2220

    Article  Google Scholar 

  • Neill T, Schaefer L, Iozzo RV (2014) Instructive roles of extracellular matrix on autophagy. Am J Pathol 184(8):2146–2153

    Article  CAS  Google Scholar 

  • Nel AE, Diaz-Sanchez D, Li N (2001) The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 7(1):20–26

    Article  CAS  Google Scholar 

  • Ogino K, Nagaoka K, Okuda T, Oka A, Kubo M, Eguchi E, Fujikura Y (2017) PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol 32(3):1047–1054

    Article  CAS  Google Scholar 

  • Ogino K, Zhang R, Takahashi H, Takemoto K, Kubo M, Murakami I, Wang DH, Fujikura Y. 2014. Allergic Airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga Mice. PLoSOne 9(3):e92710.

  • Oh CK, Geba GP, Molfino N (2010) Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 19(115):46–54

    Article  CAS  Google Scholar 

  • Ong HL, Barritt GJ (2004) Transient receptor potential and other ion channels as pharmaceutical targets in airway smooth muscle cells. Respirology 9(4):448–457

    Article  Google Scholar 

  • Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, Mogas A, Harris JM, Arron JR, Laprise C et al (2017) Increased autophagy-related 5 gene expression is associated with collagen expression in the airways of refractory asthmatics. Front Immunol 8:355

    Article  Google Scholar 

  • Qi C, Xu CJ, Koppelman GH (2019) The role of epigenetics in the development of childhood asthma. Expert Rev Clin Immunol 15(12):1287–1302

    Article  CAS  Google Scholar 

  • Qiao Y, Tam JKC, Tan SSL, Tai YK, Chin CY, Stewart AG, Ashman L, Sekiguchi K, Langenbach SY, Stelmack G et al (2017) CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol 139(1):82–92

    Article  CAS  Google Scholar 

  • Qu J, Li Y, Zhong W, Gao P, Hu C (2017) Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis 9(1):E32–E43

    Article  Google Scholar 

  • Rebane A, Akdis CA (2014) MicroRNAs in allergy and asthma. Curr Allergy Asthma Rep 14(4):424

    Article  Google Scholar 

  • Rice MB, Ljungman PL, Wilker EH, Dorans KS, Gold DR, Schwartz J, Koutrakis P, Washko GR, O'Connor GT, Mittleman MA (2015) Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med 191(6):656–664

    Article  CAS  Google Scholar 

  • Riedl MA, Nel AE (2008) Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol 8(1):49–56

  • Robbe P, Draijer C, Borg TR, Luinge M, Timens W, Wouters IM, Melgert BN, Hylkema MN (2015) Distinct macrophage phenotypes in allergic and nonallergic lung inflammation. Am J Physiol Lung Cell Mol Physiol 308(4):L358–L367

    Article  CAS  Google Scholar 

  • Royce SG, Karagiannis TC (2012) Histone deacetylases and their role in asthma. J Asthma 49(2):121–128

    Article  CAS  Google Scholar 

  • Royce SG, Karagiannis TC (2014) Histone deacetylases and their inhibitors: new implications for asthma and chronic respiratory conditions. Curr Opin Allergy Clin Immunol 14(1):44–48

    Article  CAS  Google Scholar 

  • Royce SG, Moodley Y, Samuel CS (2014) Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. Pharmacol Therapeut 141(3):250–260

    Article  CAS  Google Scholar 

  • Rumzhum NN, Rahman MM, Oliver BG, Ammit AJ (2016) Effect of sphingosine-1-phosphate on cyclo-oxygen-2 expression prostaglandin E2 secretion, and β2-adrenergic receptor desensitization. Am J Respir Cell Mol Biol 54(1):128–135

    Article  CAS  Google Scholar 

  • Sachdeva K, Do DC, Zhang Y, Hu X, Chen J, Gao P (2019) Environmental exposures and asthma development: autophagy, mitophagy, and cellular senescence. Front Immunol 10:2787

    Article  CAS  Google Scholar 

  • Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O (2011) Oxidative stress in asthma. World Allergy Organ J 4(10):151–158

    Article  CAS  Google Scholar 

  • Sakai H, Suto W, Kai Y, Chiba Y. 2017. Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma. J Smooth Muscle Res 53(0):37-47.

  • Santiago C, Ballesteros A, Martinez-Munoz L, Mellado M, Kaplan GG, Freeman GJ, Casasnovas JM (2007) Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27(6):941–951

    Article  CAS  Google Scholar 

  • Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274(3):1189–1192

    Article  CAS  Google Scholar 

  • Schultz AA, Schauer JJ, Malecki KM (2017) Allergic disease associations with regional and localized estimates of air pollution. Environ Res 155:77–85

    Article  CAS  Google Scholar 

  • Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41(2):92–104

    Article  CAS  Google Scholar 

  • Shi Q, Zhao L, Xu C, Zhang L, Zhao H. 2019. High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2.5-induced lung inflammation. Molecules 24(9): E1766.

  • Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA, Gerlic M (2019) Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J 286(3):507–522

    Article  CAS  Google Scholar 

  • Song L, Li D, Li X, Ma L, Bai X, Wen Z, Zhang X, Chen D, Peng L (2017) Exposure to PM2. 5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression. Environ Toxicol Pharmacol 50:192–199

    Article  CAS  Google Scholar 

  • Souza AJ, Oriss TB, O'Malley KJ, Ray A, Kane LP (2005) T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci U S A 102(47):17113–17118

    Article  Google Scholar 

  • Specjalski K, Jassem E (2019) MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz) 67(4):213–223

    Article  CAS  Google Scholar 

  • Su R, Jin X, Zhang W, Li Z, Liu X, Ren J (2017) Particulate matter exposure induces the autophagy of macrophages via oxidative stress-mediated PI3K/AKT/mTOR pathway. Chemosphere 167:444–453

    Article  CAS  Google Scholar 

  • Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. 2008. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 121(1):57-63.e3.

  • Sun L, Fu J, Lin SH, Sun JL, Xia L, Lin CH, Liu L, Zhang C, Yang L, Xue P et al (2020) Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH 17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J Allergy Clin Immunol 145(1):402–414

    Article  CAS  Google Scholar 

  • Taylor R, Cullen S, Martin S (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241

    Article  CAS  Google Scholar 

  • Tkacova R, Dai DLY, Vonk JM, Leung JM, Hiemstra PS, van den Berge M, Kunz L, Hollander Z, Tashkin D, Wise R, et al. 2016.Airway hyperresponsiveness in chronic obstructive pulmonary disease: a marker of asthma-chronic obstructive pulmonary disease overlap syndrome? J Allergy Clin Immunol 138(6):1571-9.e10.

  • Tliba O, Deshpande D, Chen H, Van Besien C, Kannan M, Panettieri RA Jr, Amrani Y (2003) IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle. Br J Pharmacol. 140(7):1159–1162

    Article  CAS  Google Scholar 

  • Tripathi P, Awasthi S, Gao P (2014) ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm 2014:572025

    Article  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    Article  CAS  Google Scholar 

  • Wang J, Huang J, Wang L, Chen C, Yang D, Jin M, Bai C, Song Y (2017a) Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-kappaB signaling pathway. J Thorac Dis 9(11):4398–4412

    Article  Google Scholar 

  • Wang X, Jiang S, Liu Y, Du X, Zhang W, Zhang J, Shen H (2017b) Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. Sci Total Environ 592:41–50

    Article  CAS  Google Scholar 

  • Wang SB, Wu YF, Chen ZH, Li W, Shen HH (2018) Airway epithelial ATG5 suppresses asthmatic inflammation in mice. Zhong hua Jie He He Hu Xi Za Zhi 41(11):873–877

    CAS  Google Scholar 

  • Wang L, Xu J, Liu H, Li J, Hao H (2019a) PM2.5 inhibits SOD1 expression by up-regulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice. Int Immunopharmacol 76:105871

  • Wang P, Liu H, Fan X, Zhu Z, Zhu Y (2019b) Effect of San’ao decoction on aggravated asthma mice model induced by PM2.5 and TRPA1/TRPV1 expressions. J Ethnopharmacol 236:82–90

  • Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  Google Scholar 

  • Wen X, Yan J, Han XR, Zheng GH, Tang R, Liu LF, Wu DM, Lu J, Zheng YL (2018) PTEN gene silencing contributes to airway remodeling and induces airway smooth muscle cell proliferation in mice with allergic asthma. J Thorac Dis 10(1):202–211

    Article  Google Scholar 

  • Wieczfinska J, Sitarek P, Skała E, Kowalczyk T, Pawliczak R (2020) Inhibition of NADPH oxidase-derived reactive oxygen species decreases expression of inflammatory cytokines in A549 cells. Inflammation 43(3):1173

    Article  Google Scholar 

  • Wild JS, Sigounas A, Sur N, Siddiqui MS, Alam R, Kurimoto M, Sur S. 2000.IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol 164(5):2701-10.

  • Wu J, Dong F, Wang RA, Wang J, Zhao J, Yang M, Gong W, Cui R, Dong L (2013) Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One 8(10):e77795

    Article  CAS  Google Scholar 

  • Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z (2017) Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res Int 24(32):25071–25081

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Nie J, Duan J, Shi Y, Feng L, Yang X, An Y, Sun Z (2019) The chronic effect of amorphous silica nanoparticles and benzo[a]pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells. Toxicol Res (Camb) 8(5):731–740

    Article  CAS  Google Scholar 

  • Xia W, Bai J, Wu X, Wei Y, Feng S, Li L, Zhang J, Xiong G, Fan Y, Shi J, Li H (2014) Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway. PLoS One 9(6):e98915

    Article  Google Scholar 

  • Xiao R, Noël A, Perveen Z, Penn AL (2016) In utero exposure to second-hand smoke activates pro-asthmatic and oncogenic miRNAs in adult asthmatic mice. Environ Mol Mutagen 57(3):190–199

    Article  CAS  Google Scholar 

  • Xie JL, Lin MB, Hou Q (2015) Recent advances in the study of Nrf2 and inflammatory respiratory diseases.Yao. Xue Xue Bao 50(9):1080–1087

    CAS  Google Scholar 

  • Xu M, Zhang Y, Wang M, Zhang H, Chen Y, Adcock IM, Chung KF, Mo J, Zhang Y, Li F (2019) TRPV1 and TRPA1 in lung inflammation and airway hyperresponsiveness induced by fine particulate matter (PM 2.5). Oxid Med Cell Longev 2019:7450151.

  • Xu S, Cao X (2010) Interleukin-17 and its expanding biological functions. Cell Mol Immunol 7(3):164–174

    Article  CAS  Google Scholar 

  • Xu X, Wang H, Liu S, Xing C, Liu Y, Aodengqimuge, Zhou W, Yuan X, Ma Y, Hu M, et al. (2016) TP53-dependent Autophagy Links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy 12(10):1832-1848.

  • Xu Z, Zhang Z, Ma X, Ping F, Zheng X (2015) Effect of PM2.5 on oxidative stress-JAK/STAT signaling pathway of human bronchial of epithelial cells. Wei Sheng Yan Jiu. 44(3):451–455

    CAS  Google Scholar 

  • Xu Z, Wu H, Zhang H, Bai J, Zhang Z (2020) Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol https://doi.org/10.1002/jat.3977

  • Yan Z, Wang J, Li J, Jiang N, Zhang R, Yang W, Yao W, Wu W (2016) Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. Environmental Toxicology 31(12):1869–1878

    Article  CAS  Google Scholar 

  • Yang IV, Schwartz DA (2012) Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 130(6):1243–1255

  • Yang Y, Haitchi HM, Cakebread J, Sammut D, Harvey A, Powell RM, Holloway JW, Howarth P, Holgate ST, Davies DE (2008) Epigenetic mechanisms silence a disintegrin and metalloprotease 33 expression in bronchial epithelial cells. J Allergy Clin Immunol 121(6):1393–1399

    Article  CAS  Google Scholar 

  • Zanconato S, Carraro S, Corradi M, Alinovi R, Pasquale MF, Piacentini G, Zacchello F, Baraldi E (2004) Leukotrienes and 8-isoprostane in exhaled breath condensate of children with stable and unstable asthma. J Allergy Clin Immunol 113(2):257–263

    Article  CAS  Google Scholar 

  • Zang N, Xie X, Deng Y, Wu S, Wang L, Peng C, Li S, Ni K, Luo Y, Liu E (2011) Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol 85(24):13061–13068

    Article  CAS  Google Scholar 

  • Zhang J, Zeng X, Li Y, Zhao W, Chen Z, Du Q, Zhou F, Ji N, Huang M (2019) Exposure to ambient particles alters the evolution of macrophage phenotype and amplifies the inducible release of eotaxin-1 in allergen-sensitized mice. J Biomed Nanotechnol 15(2):382–395

    Article  CAS  Google Scholar 

  • Zhang SY, Shao D, Liu H, Feng J, Feng B, Song X, Zhao Q, Chu M, Jiang C, Huang W et al (2017) Metabolomics analysis reveals that benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol 13:459–469

    Article  CAS  Google Scholar 

  • Zhang X, Zhao Z, Ma L, Guo Y, Li X, Zhao L, Tian C, Tang X, Cheng D, Chen Z et al (2018) The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice. J Cell Biochem 119(7):6033–6044

    Article  CAS  Google Scholar 

  • Zhao C, Liao J, Chu W, Wang S, Yang T, Tao Y, Wang G (2012) Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol 24(13):918–927

    Article  CAS  Google Scholar 

  • Zhao QJ, Chen H, Yang T, Rui W, Liu F, Zhang F, Zhao Y, Ding W (2016) Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim Biophys Acta 1860:2835–2843

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang H, Yang X, Zhang Y, Feng S, Yan X (2019) Fine particulate matter (PM2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice. Environ Toxicol Pharmacol 68:155–163

    Article  CAS  Google Scholar 

  • Zhao YX, Zhang HR, Yang XN, Zhang YH, Feng S, Yu FX, Yan XX (2018) Fine particulate matter-induced exacerbation of allergic asthma via activation of t-cell immunoglobulin and mucin domain 1. Chin Med J (Engl) 131(20):2461–2473

    Article  Google Scholar 

  • Zheng R, Wang F, Huang Y, Xiang Q, Dai H, Zhang W (2020) Elevated Th17 cell frequencies and Th17/Treg ratio are associated with airway hyperresponsiveness in asthmatic children. J Asthma. 2020:1–10

    Google Scholar 

  • Zhong Y, Liao J, Hu Y, Wang Y, Sun C, Zhang C, Wang G (2019) PM2.5 upregulates microRNA-146a-3p and induces M1 polarization in RAW264.7 cells by targeting Sirtuin1. Int J Med Sci 16(3):384–393

    Article  CAS  Google Scholar 

  • Zhou T, Yu Q, Sun C, Wang Y, Zhong Y, Wang G (2018) A pilot study of blood microRNAs and lung function in young healthy adults with fine particulate matter exposure 10(12):7073–7080

  • Zhou W, Tian D, He J, Wang Y, Zhang L, Cui L, Jia L, Zhang L, Li L, Shu Y et al (2016) Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget 7(15):20691–20703

    Article  Google Scholar 

  • Zhou Z, Liu Y, Duan F, Qin M, Wu F, Sheng W, Yang L, Liu J, He K (2015) Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLOS ONE 10(9):e138267

  • Zhu XM, Wang Q, Xing WW, Long MH, Fu WL, Xia WR, Jin C, Guo N, Xu DQ, Xu DG (2018) PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int J Biol Sci 14(5):557–564

    Article  CAS  Google Scholar 

  • Zou XL, Chen ZG, Zhang TT, Feng DY, Li HT, Yang HL (2018) Th17/Treg homeostasis, but not Th1/Th2 homeostasis, is implicated in exacerbation of human bronchial asthma. Ther Clin Risk Manag 14:1627–1636

    Article  CAS  Google Scholar 

  • Zuo L, Koozechian MS, Chen LL (2014) Characterization of reactive nitrogen species in allergic asthma. Ann Allergy Asthma Immunol 112(1):18–22

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Xi Lu participated in the literature search, review, translation of the manuscript, and writing of the original manuscript. Rongqin Li participated in the translation of the manuscript. Xixin Yan participated in the manuscript concept and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xixin Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Li, R. & Yan, X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res 28, 6374–6391 (2021). https://doi.org/10.1007/s11356-020-12051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12051-w

Keywords

Navigation