Skip to main content
Log in

Photocatalytic activity of TiO2–P25@n-TiO2@HAP composite films for air depollution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We report on an elaboration of new composite photocatalysts (TiO2–P25@ n-TiO2@HAP) based on grafted size-selected 5-nm titanium-oxo-alkoxo nanoparticles on P25-TiO2 nanoparticles and HAP obtained by co-precipitation of salts. The 5-nm oxo-TiO2 particles were prepared in a sol–gel reactor with rapid reagents micromixing. The photocatalytic test of ethylene degradation, in a continuous-flow fixed-bed reactor, showed an increase of the photocatalytic yield for the composite photocatalysts with an addition of HAP. This result was interpreted by a synergy between adsorption and photo-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34:2063–2101

    Article  CAS  Google Scholar 

  • Azouani R, Soloviev A, Benmami M, Chhor K, Bocquet J-F, Kanaev A (2007) Stability and growth of titanium-oxo-alkoxy TixOy(OiPr)z clusters. J. Phys. Chem. C. 111:16243–16248

    Article  CAS  Google Scholar 

  • Azouani R, Michau A, Hassouni K, Chhor K, Bocquet J-F, Vignes J-L, Kanaev A (2010a) Elaboration of pure and doped TiO2 nanoparticles in sol–gel reactor with turbulent micromixing: Application to nanocoatings and photocatalysis. Chem. Eng. Res. Des. 88:1123–1130

    Article  CAS  Google Scholar 

  • Azouani R, Tieng S, Chhor K, Bocquet J-F, Eloy P, Gaigneaux EM, Klementiev K, Kanaev A (2010b) TiO2 doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range. Phys. Chem. Chem. Phys. 12:11325–11334

    Article  CAS  Google Scholar 

  • Bahdod A, El Asri S, Saoiabi A, Coradin T, Laghzizil A (2009) Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties. Water Res. 43:313–318

    Article  CAS  Google Scholar 

  • Benmami M, Chhor K, Kanaev A (2005) Supported nanometric titanium oxide sols as a new efficient photocatalyst. J Phys Chem B 109:19766–19771

    Article  CAS  Google Scholar 

  • Benmami M, Chhor K, Kanaev A (2006) High photocatalytic activity of monolayer nanocoatings prepared from non-crystalline titanium oxide sol nanoparticles. Chem. Phys. 442:552–557

    Google Scholar 

  • Bett JA, Hall WK (1968) The microcatalytic technique applied to a zero order reaction: the dehydration of 2-butanol over hydroxyapatite catalysts. J. Catal. 10:105–113

    Article  CAS  Google Scholar 

  • Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B Environ. 17:25–36

    Article  CAS  Google Scholar 

  • Chlala D, Labaki M, Giraudon J, Lamonier J (2016) Toluene total oxidation over Pd and Au nanoparticles supoorted on hydroxyapatite. Comptes Rendus Chimie 19:525–537

    Article  CAS  Google Scholar 

  • Fanou GD, Yao B, Cheng K, Brinza O, Traore M, Kanaev A, Chhor K (2016) Elaboration of novel nanoparticulate TiO2-P25@nTiO2 composite for catalysis. International Journal of Advanced Applied Physics Research 3:19–25

    Article  Google Scholar 

  • Feldbach E, Kirm M, Kotlov A, Mägi H (2015) Luminescence spectroscopy of Ca-apatites under VUV excitation, User Rep. Mater. Sci. Httpphoton-Sci. Desy 17:122–123

    Google Scholar 

  • Fujishima A, Honda K (1972) TiO2 photoelectrochemistry and photocatalysis. Nature. 238:37–38

    Article  CAS  Google Scholar 

  • Giwa A, Yusuf A, Balogun HA, Sambudi NS, Bilad MR, Adeyemi I, Chakraborty S, Curcio S (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: a comprehensive review. Process Safety and Environmental Protection 146:220–256

    Article  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science. 302:100–103

    Article  CAS  Google Scholar 

  • Hauchecorne B, Tytgat T, Verbruggen SW, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S (2011) Photocatalytic degradation of ethylene: an FTIR in situ study under atmospheric conditions. Appl. Catal. B Environ. 105:111–116

    Article  CAS  Google Scholar 

  • Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J. Mol. Catal. Chem. 263:32–38

    Article  CAS  Google Scholar 

  • Jacobson MZ (2002) Atmospheric pollution: history, science, and regulation. Cambridge University Press

  • Jia Z (2013) Elaboration des matériaux composites nanostructurés Ag, Au/TiO2 pour la dépollution des effluents gazeux avec une activation par plasma. Université Paris 13

  • Joris SJ, Amberg CH (1971) J. Phys. Chem. 75:316

    Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B. 106:7729–7744

    Article  CAS  Google Scholar 

  • Kibby CL, Lande SS, Hall WK (1972) Tracer studies of acid-catalyzed reactions. XI. Stereoselectivity in alcohol dehydration over hydroxyapatite and alumina catalysts. J. Am. Chem. Soc. 94:214–220

    Article  CAS  Google Scholar 

  • Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Miner. Eng. 17:373–381

    Article  CAS  Google Scholar 

  • Li P, Nakanishi K, Kokubo T, de Groot K (1993) Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials. 14:963–968

    Article  CAS  Google Scholar 

  • Lopez L, Daoud WA, Dutta D, Panther BC, Turney TW (2013) Effect of substrate on surface morphology and photocatalysis of large-scale TiO 2 films. Appl. Surf. Sci. 265:162–168

    Article  CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan JA (1994) Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 28:1219–1228

    Article  CAS  Google Scholar 

  • Matsumura Y, Moffat JB (1994) Partial oxidation of methane to carbon-monoxide and hydrogen with molecular-oxygen and nitrous-oxide over hydroxyapatite catalysts. J. Catal. 148:323–333

    Article  CAS  Google Scholar 

  • Matsumura Y, Moffat JB (1996) Methanol adsorption and dehydrogenation over stoichiometric and non-stoichiometric hydroxyapatite catalysts. J Chem Soc Faraday Trans. 92:1981–1984

    Article  CAS  Google Scholar 

  • Matsumura Y, Kanai H, Moffat JB (1997) Catalytic oxidation of carbon monoxide over stoichiometric and non-stoichiometric hydroxyapatites. J. Chem. Soc. Faraday Trans. 93:4383–4387

    Article  CAS  Google Scholar 

  • Mitsionis A, Vaimakis T, Trapalis C, Todorova N, Bahnemann D, Dillert R (2011) Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation. Appl. Catal. B Environ. 106:398–404

    Article  CAS  Google Scholar 

  • Monma H (1982) Catalytic behavior of calcium phosphates for decompositions of 2-propanol and ethanol. J. Catal. 75:200–203

    Article  CAS  Google Scholar 

  • Nasr-Esfahani M, Fekri S (2012) Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air. React. Kinet. Mech. Catal. 107:89–103

    Article  CAS  Google Scholar 

  • Nathanael AJ, Mangalaraj D, Chen PC, Ponpandian N (2010) Mechanical and photocatalytic properties of hydroxyapatite/titania nanocomposites prepared by combined high gravity and hydrothermal process. Compos. Sci. Technol. 70:419–426

    Article  Google Scholar 

  • Nishikawa H, Omamiuda K (2002) Photocatalytic activity of hydroxyapatite for methyl mercaptane. J. Mol. Catal. Chem. 179:193–200

    Article  CAS  Google Scholar 

  • Nonami T (2004) Apatite-coated titanium dioxide photocatalyst for air purification. Catal. Today. 96:113–118

    Article  CAS  Google Scholar 

  • Qian G, Li M, Wang F, Liu X (2014) Removal of Fe3+ from aqueous solution by natural apatite, J. Surf. Eng. Mater. Adv, Technol

    Book  Google Scholar 

  • Smeulders DE, Wilson MA, Armstrong L (2001) Insoluble organic compounds in the Bayer process. Ind. Eng. Chem. Res. 40:2243–2251

    Article  CAS  Google Scholar 

  • Smith K. (1989), Modern powder diffraction; in Review in Mineralogy, Edited by D. L. Bish and J. E. Post. Mineralogical Society of America,Washington, DC, 20 : 183.

  • Tanaka H, Tsuda E, Nishikawa H, Fuji M (2012) FTIR studies of adsorption and photocatalytic decomposition under UV irradiation of dimethyl sulfide on calcium hydroxyapatite. Adv. Powder Technol. 23:115–119

    Article  CAS  Google Scholar 

  • Tieng S, Kanaev A, Chhor K (2011) New homogeneously doped Fe(III)-TiO2 photocatalyst for gaseous pollutant degradation. J Appl Catal A 399:191–197

    Article  CAS  Google Scholar 

  • Tieng S, Jia Z, Diaz-Gomez Trevino AP, Eloy P, Giagneaux EM, Chhor K, Kanaev A (2019) Major non-volatile intermediate products of photo-catalytic decomposition of ethylene. Journal of Catalysis 374:328–334

    Article  CAS  Google Scholar 

  • Tsukada M, Wakamura M, Yoshida N, Watanabe T (2011) Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO 2. J. Mol. Catal. Chem. 338:18–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors (Guy Didier FANOU, Mamadou TRAORE, Benjamin Kouassi YAO, Andrei KANAEV and Khay CHHOR) contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Guy Didier FANOU. The first draft of the manuscript was written by Mamadou TRAORE, and other authors (Guy Didier FANOU, Benjamin Kouassi YAO, Andrei KANAEV, and Khay CHHOR) commented on previous versions of the manuscript. All the authors (Guy Didier FANOU, Mamadou TRAORE, Benjamin Kouassi YAO, Andrei KANAEV and Khay CHHOR) read and approved the final manuscript.

Corresponding author

Correspondence to Mamadou Traore.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanou, G.D., Traore, M., Yao, B.K. et al. Photocatalytic activity of TiO2–P25@n-TiO2@HAP composite films for air depollution. Environ Sci Pollut Res 28, 21326–21333 (2021). https://doi.org/10.1007/s11356-020-11924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11924-4

Keywords