Skip to main content

Advertisement

Log in

Nickel carcinogenesis mechanism: cell cycle dysregulation

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nickel (Ni) is a widely distributed metal in the environment and an important pollutant due to its widespread industrial applications. Ni has various toxicity in humans and experimental animals, including carcinogenicity. However, the carcinogenic effects of Ni remain troublesome. Cell cycle dysregulation may be an important carcinogenic mechanism and is also a potential molecular mechanism for Ni complexes anti-cancerous effects. Therefore, we conducted a literature review to summarize the effects of Ni on cell cycle. Up to now, there were three different reports on Ni-induced cell cycle arrest: (i) Ni can induce cell cycle arrest in G0/G1 phase, phosphorylation and degradation of IkappaB kinase-alpha (IKKα)–dependent cyclin D1 and phosphoinositide-3-kinase (PI3K)/serine-threonine kinase (Akt) pathway–mediated down-regulation of expressions of cyclin-dependent kinases 4 (CDK4) play important role in it; (ii) Ni can induce cell cycle arrest in S phase, but the molecular mechanism is not known; (iii) G2/M phase is the target of Ni toxicity, and Ni compounds cause G2/M cell cycle phase arrest by reducing cyclinB1/Cdc2 interaction through the activation of the ataxia telangiectasia mutated (ATM)-p53-p21 and ATM-checkpoint kinase inhibitor 1 (Chk1)/Chk2-cell division cycle 25 (Cdc25) pathways. Revealing the mechanisms of cell cycle dysregulation associated with Ni exposure may help in the prevention and treatment of Ni-related carcinogenicity and toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The present study data are available from the corresponding author on reasonable request.

Abbreviations

Ni:

nickel

IKKα:

IkappaB kinase-alpha

PI3K:

phosphoinositide-3-kinase

Akt:

serine-threonine kinase

ATM:

ataxia telangiectasia mutated

Chk:

checkpoint kinase inhibitor

Cdc25:

cell division cycle 25

CDK:

cyclin-dependent kinases

ROS:

reactive oxygen species

IARC:

International Agency for Research on Cancer; 8-OHdG: 8-hydroxy-2′-deoxyguanosine

CKIs:

cyclin-dependent kinase inhibitors

NRK:

normal rat kidney

References

  • Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MA, Alrokayan SA (2015) Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere 135:278–288

    CAS  Google Scholar 

  • Akerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Wallinder IO, Hendriks G, Karlsson HL (2018) Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay,-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ Mol Mutagen 59:211–222

    Google Scholar 

  • Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL (2018) Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ Mol Mutagen 59:211–222

    Google Scholar 

  • Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ, Eid EE, Zainal Z, Saeed M, Ilowefah M, Fakurazi S, Mohd Isa N, El Zowalaty ME (2013) Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin. Int J Nanomedicine 8:2497–2508

    Google Scholar 

  • Arellano M, Moreno S (1997) Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29:559–573

    CAS  Google Scholar 

  • Bendris N, Lemmers B, Blanchard JM (2015) Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle 14:1786–1796

    CAS  Google Scholar 

  • Bisceglie F, Orsoni N, Pioli M, Bonati B, Tarasconi P, Rivetti C, Amidani D, Montalbano S, Buschini A, Pelosi G (2019) Cytotoxic activity of copper(ii), nickel(ii) and platinum(ii) thiosemicarbazone derivatives: interaction with DNA and the H2A histone peptide. Metallomics 11:1729–1742

    CAS  Google Scholar 

  • Bonsignore R, Terenzi A, Spinello A, Martorana A, Lauria A, Almerico AM, Keppler BK, Barone G (2016) G-quadruplex vs. duplex-DNA binding of nickel(II) and zinc(II) Schiff base complexes. J Inorg Biochem 161:115–121

    CAS  Google Scholar 

  • Brooks G, La Thangue NB (1999) The cell cycle and drug discovery: the promise and the hope. Drug Discov Today 4:455–464

    CAS  Google Scholar 

  • Caggiano R, Sabia S, Speranza A (2019) Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM1). Environ Sci Pollut Res Int 26:36423–36433

    CAS  Google Scholar 

  • Cambre MH, Holl NJ, Wang B, Harper L, Lee HJ, Chusuei CC, Hou FYS, Williams ET, Argo JD, Pandey RR, Huang YW (2020) Cytotoxicity of NiO and Ni(OH)2 nanoparticles is mediated by oxidative stress-induced cell death and suppression of cell proliferation. Int J Mol Sci 21:2355

  • Capasso L, Camatini M, Gualtieri M (2014) Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 226:28–34

    CAS  Google Scholar 

  • Cascales HS, Mullers E, Lindqvist A (2017) How the cell cycle enforces senescence. Aging-Us 9:2022–2023

    Google Scholar 

  • Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6:a026104

    Google Scholar 

  • Chen CY, Lin TK, Chang YC, Wang YF, Shyu HW, Lin KH, Chou MC (2010) Nickel(II)-induced oxidative stress, apoptosis, G2/M arrest, and genotoxicity in normal rat kidney cells. J Toxicol Environ Health A 73:529–539

    CAS  Google Scholar 

  • Cheng Z, Cheng N, Shi D, Ren X, Gan T, Bai Y, Yang K (2019) The relationship between Nkx2.1 and DNA oxidative damage repair in nickel smelting workers: Jinchang Cohort Study. Int J Environ Res Public Health 16:120

  • D’Anto V, Valletta R, Amato M, Schweikl H, Simeone M, Paduano S, Rengo S, Spagnuolo G (2012) Effect of nickel chloride on cell proliferation. Open Dent J 6:177–181

    Google Scholar 

  • Dalton S (2015) Linking the cell cycle to cell fate decisions. Trends Cell Biol 25:592–600

    Google Scholar 

  • Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar MS (2018) Primary concept of nickel toxicity - an overview. J Basic Clin Physiol Pharmacol 30:141–152

    Google Scholar 

  • Deng J, Guo H, Cui H, Fang J, Zuo Z, Deng J, Wang X, Zhao L (2016) Oxidative stress and inflammatory responses involved in dietary nickel chloride (NiCl2)-induced pulmonary toxicity in broiler chickens. Toxicol Res (Camb) 5:1421–1433

    CAS  Google Scholar 

  • Dozier C, Mazzolini L, Cenac C, Froment C, Burlet-Schiltz O, Besson A, Manenti S (2017) CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 36:3781–3788

    CAS  Google Scholar 

  • Dulic V, Lees E, Reed SI (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257:1958–1961

    CAS  Google Scholar 

  • Dumala N, Mangalampalli B, Grover P (2019) In vitro genotoxicity assessment of nickel(II) oxide nanoparticles on lymphocytes of human peripheral blood. J Appl Toxicol 39:955–965

    CAS  Google Scholar 

  • Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679

    CAS  Google Scholar 

  • Gorgizadeh M, Azarpira N, Lotfi M, Daneshvar F, Salehi F, Sattarahmady N (2019) Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: in vitro and in vivo studies. Photodiagn Photodyn Ther 27:27–33

    CAS  Google Scholar 

  • Guo H, Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Deng J, Yin S, Li J, Tang K (2014) NiCl2-down-regulated antioxidant enzyme mRNA expression causes oxidative damage in the broiler(’)s kidney. Biol Trace Elem Res 162:288–295

    CAS  Google Scholar 

  • Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J (2015a) Dietary NiCl2 causes G2/M cell cycle arrest in the broiler’s kidney. Oncotarget 6:35964–35977

    Google Scholar 

  • Guo HR, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY, Chen KJ, Deng J (2015b) Modulation of the PI3K/Akt pathway and Bcl-2 family proteins involved in chicken’s tubular apoptosis induced by nickel chloride (NiCl2). Int J Mol Sci 16:22989–23011

    CAS  Google Scholar 

  • Guo HR, Deng HD, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY, Chen KJ (2015c) Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-kappa B pathway and reduction of anti-inflammatory mediator expression in the kidney. Oncotarget 6:28607–28620

    Google Scholar 

  • Guo HR, Chen L, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY (2016a) Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci 17:10

    Google Scholar 

  • Guo HR, Cui HM, Fang J, Zuo ZC, Deng JL, Wang X, Zhao L, Chen KJ, Deng J (2016b) Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response. Aging-Us 8:3009–3027

    CAS  Google Scholar 

  • Guo HR, Cui HM, Fang J, Zuo ZC, Deng JL, Wang X, Zhao L, Wu BY, Chen KJ, Deng JE (2016c) Nickel chloride-induced apoptosis via mitochondria- and Fas-mediated caspase-dependent pathways in broiler chickens. Oncotarget 7:79733–79746

    Google Scholar 

  • Guo HR, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Wang X, Wu BY, Chen KJ, Deng J (2016d) Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens. Oncotarget 7:17508–17519

    Google Scholar 

  • Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2019) Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 20:4690

    CAS  Google Scholar 

  • Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–356

    CAS  Google Scholar 

  • Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110(Suppl 5):797–799

    CAS  Google Scholar 

  • Huang HL, Hu M, Zhao R, Li P, Li MY (2013a) Dihydromyricetin suppresses the proliferation of hepatocellular carcinoma cells by inducing G2/M arrest through the Chk1/Chk2/Cdc25C pathway. Oncol Rep 30:2467–2475

    CAS  Google Scholar 

  • Huang J, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wu B (2013b) The association between splenocyte apoptosis and alterations of Bax, Bcl-2 and caspase-3 mRNA expression, and oxidative stress induced by dietary nickel chloride in broilers. Int J Environ Res Public Health 10:7310–7326

    Google Scholar 

  • Huang J, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B (2014a) Downregulation of TLR4 and 7 mRNA expression levels in broiler’s spleen caused by diets supplemented with nickel chloride. Biol Trace Elem Res 158:353–358

    CAS  Google Scholar 

  • Huang J, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B (2014b) Effect of dietary nickel chloride on splenic immune function in broilers. Biol Trace Elem Res 159:183–191

    CAS  Google Scholar 

  • Ijomone OM, Olatunji SY, Owolabi JO, Naicker T, Aschner M (2018) Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and alpha-synuclein. J Trace Elem Med Biol 50:16–23

    CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  Google Scholar 

  • Jakoby M, Schnittger A (2004) Cell cycle and differentiation. Curr Opin Plant Biol 7:661–669

    CAS  Google Scholar 

  • Jang SH, Kim AR, Park NH, Park JW, Han IS (2016) DRG2 regulates G2/M progression via the cyclin B1-Cdk1 complex. Mol Cell 39:699–704

    CAS  Google Scholar 

  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257:1689–1694

    CAS  Google Scholar 

  • Kong L, Gao XJ, Zhu JQ, Zhang T, Xue YY, Tang M (2017) Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Environ Toxicol 32:1530–1538

    CAS  Google Scholar 

  • Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond Ser B Biol Sci 366:3562–3571

    CAS  Google Scholar 

  • Latvala S, Hedberg J, Di Bucchianico S, Moller L, Wallinder IO, Elihn K, Karlsson HL (2016) Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles. PLoS One 11:e0159684

    Google Scholar 

  • Latvala S, Vare D, Karlsson HL, Elihn K (2017) In vitro genotoxicity of airborne Ni-NP in air-liquid interface. J Appl Toxicol 37:1420–1427

    CAS  Google Scholar 

  • Lee SH, Kim DK, Seo YR, Woo KM, Kim CS, Cho MH (1998) Nickel (II)-induced apoptosis and G2/M enrichment. Exp Mol Med 30:171–176

    CAS  Google Scholar 

  • Lee YJ, Lim SS, Baek BJ, An JM, Nam HS, Woo KM, Cho MK, Kim SH, Lee SH (2016) Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage. Environ Toxicol Pharmacol 42:76–84

    CAS  Google Scholar 

  • Li Y, Cha C, Lv X, Liu J, He J, Pang Q, Meng L, Kuang H, Fan R (2020) Association between 10 urinary heavy metal exposure and attention deficit hyperactivity disorder for children. Environ Sci Pollut Res Int 27:31233–31242

  • Lim SH, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093

    CAS  Google Scholar 

  • Liu CM, Zheng GH, Ming QL, Chao C, Sun JM (2013) Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway. J Agric Food Chem 61:1146–1154

    CAS  Google Scholar 

  • Ma CG, Song MM, Zhang Y, Yan MQ, Zhang M, Bi H (2014) Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep 1:114–121

    CAS  Google Scholar 

  • Mombach JCM, Bugs CA, Chaouiya C (2014) Modelling the onset of senescence at the G1/S cell cycle checkpoint. BMC Genomics 15:S7

    Google Scholar 

  • Morales ME, Derbes RS, Ade CM, Ortego JC, Stark J, Deininger PL, Roy-Engel AM (2016) Heavy metal exposure influences double strand break DNA repair outcomes. PLoS One 11:e0151367

    Google Scholar 

  • Murray JM, Carr AM (2018) Integrating DNA damage repair with the cell cycle. Curr Opin Cell Biol 52:120–125

    CAS  Google Scholar 

  • Nawaz M, Almessiere MA, Almofty SA, Gungunes CD, Slimani Y, Baykal A (2019) Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. J Photochem Photobiol B 196:111506

    CAS  Google Scholar 

  • Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:71–78

    CAS  Google Scholar 

  • Ouyang WM, Zhang DY, Li JX, Verma UN, Costa M, Huang CS (2009) Soluble and insoluble nickel compounds exert a differential inhibitory effect on cell growth trough IKK alpha-dependent cyclin D1 down-regulation. J Cell Physiol 218:205–214

    CAS  Google Scholar 

  • Owumi SE, Olayiwola YO, Alao GE, Gbadegesin MA, Odunola OA (2019) Cadmium and nickel co-exposure exacerbates genotoxicity and not oxido-inflammatory stress in liver and kidney of rats: protective role of omega-3 fatty acid. Environ Toxicol 35:231–241

  • Palmisano A, Zamborszky J, Oguz C, Csikasz-Nagy A (2017) Molecular network dynamics of cell cycle control: periodicity of start and finish. Methods Mol Biol 1524:331–349

    CAS  Google Scholar 

  • Pesch B, Kendzia B, Pohlabeln H, Ahrens W, Wichmann HE, Siemiatycki J, Taeger D, Zschiesche W, Behrens T, Jockel KH, Bruning T (2019) Exposure to welding fumes, hexavalent chromium, or nickel and lung cancer risk. Am J Epidemiol 188:1984–1993

    Google Scholar 

  • Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: : cell cycle arrest versus apoptosis. Toxicology 181:475–481

    Google Scholar 

  • Polo-Ceron D (2019) Cu(II) and Ni(II) complexes with new tridentate NNS thiosemicarbazones: synthesis, characterisation, DNA interaction, and antibacterial activity. Bioinorg Chem Appl 2019:3520837

    Google Scholar 

  • Poon RY (2016) Cell cycle control: a system of interlinking oscillators. Methods Mol Biol 1342:3–19

    Google Scholar 

  • Puangprasert S, Prueksasit T (2019) Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J Environ Manag 252:109601

    CAS  Google Scholar 

  • Rajivgandhi G, Maruthupandy M, Quero F, Li WJ (2019) Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. Mater Sci Eng C Mater Biol Appl 102:829–843

    CAS  Google Scholar 

  • Saad EA, Hassanien MM, El-Lban FW (2017) Nickel(II) diacetyl monoxime-2-pyridyl hydrazone complex can inhibit Ehrlich solid tumor growth in mice: a potential new antitumor drug. Biochem Biophys Res Commun 484:579–585

    CAS  Google Scholar 

  • Saito M, Arakaki R, Yamada A, Tsunematsu T, Kudo Y, Ishimaru N (2016) Molecular mechanisms of nickel allergy. Int J Mol Sci 17:202

    Google Scholar 

  • Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N (2020) Pathogenic mechanisms and therapeutic implication in nickel-induced cell damage. Endocr Metab Immune Disord Drug Targets 20:968–984

    CAS  Google Scholar 

  • Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Faisal M, Wahab R, Alatar AA, Al-Khedhairy AA, Musarrat J (2018) Nickel oxide nanoparticles induced transcriptomic alterations in HEPG2 cells. Adv Exp Med Biol 1048:163–174

    CAS  Google Scholar 

  • Scanlon SE, Scanlon CD, Hegan DC, Sulkowski PL, Glazer PM (2017) Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis 38:627–637

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    CAS  Google Scholar 

  • Shiao YH, Lee SH, Kasprzak KS (1998) Cell cycle arrest, apoptosis and p53 expression in nickel(II) acetate-treated Chinese hamster ovary cells. Carcinogenesis 19:1203–1207

    CAS  Google Scholar 

  • Sun JJ, Du YP, Song QL, Nan J, Guan PZ, Guo JH, Wang X, Yang JB, Zhao CY (2019) E2F is required for STAT3-mediated upregulation of cyclin B1 and Cdc2 expressions and contributes to G2-M phase transition. Acta Biochim Biophys Sin 51:313–322

    CAS  Google Scholar 

  • Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P (2016) CDK substrate phosphorylation and ordering the cell cycle. Cell 167:1750

    CAS  Google Scholar 

  • Tang K, Li J, Yin S, Guo H, Deng J, Cui H (2014) Effects of nickel chloride on histopathological lesions and oxidative damage in the thymus. Health 6:2875–2882

    Google Scholar 

  • Tang K, Guo H, Deng J, Cui H, Peng X, Fang J, Zuo Z, Wang X, Wu B, Li J, Yin S (2015) Inhibitive effects of nickel chloride (NiCl(2)) on thymocytes. Biol Trace Elem Res 164:242–252

    CAS  Google Scholar 

  • Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    CAS  Google Scholar 

  • Terpitowska S, Siwicki AK (2019) Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium(iii), iron(iii), molybdenum(iii) or nickel(ii) and their mixtures. Toxicol Res UK 8:188–195

    Google Scholar 

  • Thomasova D, Anders HJ (2015) Cell cycle control in the kidney. Nephrol Dial Transplant 30:1622–1630

    CAS  Google Scholar 

  • Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    CAS  Google Scholar 

  • Wang Z, Fan M, Candas D, Zhang TQ, Qin L, Eldridge A, Wachsmann-Hogiu S, Ahmed KM, Chromy BA, Nantajit D, Duru N, He F, Chen M, Finkel T, Weinstein LS, Li JJ (2014) Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev Cell 29:217–232

    Google Scholar 

  • Wang X, Simpson ER, Brown KA (2015) p53: protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res 75:5001–5007

    CAS  Google Scholar 

  • Wang LL, Chen HC, Wang CY, Hu ZJ, Yan SP (2018) Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc Natl Acad Sci U S A 115:E3837–E3845

    CAS  Google Scholar 

  • Wong SHK, Shih RSM, Schoene NW, Lei KY (2008) Zinc-induced G2/M blockage is p53 and p21 dependent in normal human bronchial epithelial cells. Am J Physiol Cell Physiol 294:C1342–C1349

    CAS  Google Scholar 

  • Wood DJ, Endicott JA (2018) Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 8:180112

    Google Scholar 

  • Wu Y, Kong L (2020) Advance on toxicity of metal nickel nanoparticles. Environ Geochem Health 42:2277–2286

    CAS  Google Scholar 

  • Wu B, Cui H, Peng X, Fang J, Zuo Z, Huang J, Luo Q, Deng Y, Wang H, Liu J (2013) Changes of the serum cytokine contents in broilers fed on diets supplemented with nickel chloride. Biol Trace Elem Res 151:234–239

    CAS  Google Scholar 

  • Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Huang J (2014a) Dietary nickel chloride induces oxidative stress, apoptosis and alters Bax/Bcl-2 and caspase-3 mRNA expression in the cecal tonsil of broilers. Food Chem Toxicol 63:18–29

    CAS  Google Scholar 

  • Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Huang J (2014b) Toxicological effects of nickel chloride on IgA+ B Cells and sIgA, IgA, IgG, IgM in the intestinal mucosal immunity in broilers. Int J Environ Res Public Health 11:8175–8192

    CAS  Google Scholar 

  • Wu BY, Cui HM, Peng X, Fang J, Zuo ZC, Deng JL, Huang JY (2014c) Analysis of the Toll-like receptor 2-2 (TLR2-2) and TLR4 mRNA expression in the intestinal mucosal immunity of broilers fed on diets supplemented with nickel chloride. Int J Environ Res Public Health 11:657–670

    Google Scholar 

  • Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Huang J (2015a) Toxicological effects of nickel chloride on the cytokine mRNA expression and protein levels in intestinal mucosal immunity of broilers. Environ Toxicol 30:1309–1321

    CAS  Google Scholar 

  • Wu S, Bai YN, Pu HQ, He J, Zheng TZ, Li HY, Dai M, Cheng N (2015b) Dynamic changes in DNA damage and repair biomarkers with employment length among nickel smelting workers. Biomed Environ Sci 28:679–682

    CAS  Google Scholar 

  • Wu Y, Ma J, Sun Y, Tang M, Kong L (2020) Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere 255:126913

    CAS  Google Scholar 

  • Yin S, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Guo H (2016a) Toxic effect of NiCl2 on development of the bursa of Fabricius in broiler chickens. Oncotarget 7:125–139

    Google Scholar 

  • Yin S, Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Tang K, Li J (2016b) Nickel chloride (NiCl2) induces histopathological lesions via oxidative damage in the broiler’s bursa of fabricius. Biol Trace Elem Res 171:214–223

    CAS  Google Scholar 

  • Yu M, Zhang J (2017) Serum and hair nickel levels and breast cancer: systematic review and meta-analysis. Biol Trace Elem Res 179:32–37

    CAS  Google Scholar 

  • Zambelli B, Ciurli S (2013) Nickel and human health. Met Ions Life Sci 13:321–357

    Google Scholar 

  • Zambelli B, Uversky VN, Ciurli S (2016) Nickel impact on human health: an intrinsic disorder perspective. Biochim Biophys Acta 1864:1714–1731

    CAS  Google Scholar 

  • Zdrojewicz Z, Popowicz E, Winiarski J (2016) Nickel - role in human organism and toxic effects. Pol Merkur Lekarski 41:115–118

    Google Scholar 

  • Zhang YT, Qian DT, Li ZL, Huang Y, Wu Q, Ru GZ, Chen M, Wang B (2016) Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones 21:687–696

    CAS  Google Scholar 

Download references

Funding

This review paper was supported by the program for Changjiang scholars and the university innovative research team (IRT 0848), the Shuangzhi project of Sichuan Agricultural University (03573050; 1921993267), and Sichuan Science and Technology Program (2020YJ0113)

Author information

Authors and Affiliations

Authors

Contributions

Hongrui Guo and Hengmin Cui planned and designed the work. Hongrui Guo, Huidan Deng, Huan Liu, and Zhijie Jian were a major contributor in data collection and writing the manuscript. Hengmin Cui supervised the work. Hongrui Guo, Huidan Deng, Huan Liu, Zhijie Jian, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun Li, Xun Wang, and Ling Zhao revised the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Huidan Deng or Hengmin Cui.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Deng, H., Liu, H. et al. Nickel carcinogenesis mechanism: cell cycle dysregulation. Environ Sci Pollut Res 28, 4893–4901 (2021). https://doi.org/10.1007/s11356-020-11764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11764-2

Keywords

Navigation