Skip to main content
Log in

Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pennisetum sp. was employed as a model species to detect the growth and physiological response to cadmium (Cd) stress at different Cd concentrations (0, 20, 50, and 100 mg kg−1) in three types of soils (yellow brown soil, yellow soil, and red soil). Results showed that the growth of Pennisetum sp. was not significantly influenced by Cd in 20 mg kg−1, but significantly inhibited at higher Cd concentrations in three types of soils. Besides, the higher Cd concentrations, the lower root, stem, and leaf biomass. With Cd concentration of soil increasing, Cd content of root, stem, and leaf increased. Compared with no Cd, high Cd concentrations (50 and 100 mg kg−1) induced the physiological indices (photosynthetic rate, stomatal conductance, transpiration rate) and biochemical indices (nitrate reductase, glutamine synthetase, and glutamate synthase activities) decreasing, but the concentration of NO3 and NH4+ increasing. The activity of antioxidative enzymes (SOD, POD, and CAT) was disrupted and the content of malondialdehyde (MDA) increasing. Pennisetum sp. could protect cells from damage and maintain normal physiological metabolism via increasing the production of soluble sugar and soluble protein, but soluble proteins and soluble sugars were limited in high concentrations of Cd (50 and 100 mg kg−1). Moreover, the growth and physiological response to Cd are different in the three types of soils. The growth of Pennisetum sp. in yellow brown soil was better than that in other two soils, and the gas exchange rate, antioxidant enzyme activity, and nitrogen metabolism in yellow soil and red soil were more affected by Cd stress than that in yellow brown soil. Overall, Pennisetum sp. had certain tolerance and biosorption ability to Cd in different Cd concentrations and different types of soil. Hence, Pennisetum sp. was a suitable choice for Cd remediation, especially in yellow brown soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

National Natural Science Foundation of China (CN) (31300513).

Author information

Authors and Affiliations

Authors

Contributions

Senlin Yang conducted the experiments to obtain the analytical data and contributed to the manuscript. Jian Zhang modified some experimental methods and helped to collect experimental data. Lianghua Chen interpreted the results, and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lianghua Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, J. & Chen, L. Growth and physiological responses of Pennisetum sp. to cadmium stress under three different soils. Environ Sci Pollut Res 28, 14867–14881 (2021). https://doi.org/10.1007/s11356-020-11701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11701-3

Keywords

Navigation