Skip to main content

Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon

Abstract

The organochlorine pesticides (OCPs) have raised concerns about being persistent and toxic to the environment. Phytoremediation techniques show promise for the revitalization of polluted soils. The current study focused on optimizing the phytoremediation potential of Miscanthus sinensis And. (M. sinensis), second-generation energy crop, by exploring two soil amendments: Tween 20 and activated carbon (AC). The results showed that when M. sinensis grew in OCP-polluted soil without amendments to it, the wide range of compounds, i.e., α-HCH, β-HCH, γ-HCH, 2.4-DDD, 4.4-DDE, 4.4-DDD, 4.4-DDT, aldrin, dieldrin, and endrin, was accumulated by the plant. The introduction of soil amendments improved the growth parameters of M. sinensis. The adding of Tween 20 enhanced the absorption and transmigration to aboveground biomass for some OCPs; i.e., for γ-HCH, the increase was by 1.2, for 4.4-DDE by 8.7 times; this effect was due to the reduction of the hydrophobicity which made pesticides more bioavailable for the plant. The adding of AC reduced OCPs absorption by plants, consequently, for γ-HCH by 2.1 times, 4.4-DDD by 20.5 times, 4.4-DDE by 1.4 times, 4.4-DDT by 8 times, α-HCH was not adsorbed at all, and decreased the translocation to the aboveground biomass: for 4.4-DDD by 31 times, 4.4-DDE by 2.8 times, and γ-HCH by 2 times; this effect was due to the decrease in the bioavailability of pesticides. Overall, the amendment of OCP-polluted soil by Tween 20 speeds the remediation process, and incorporation of AC permitted to produce the relatively clean biomass for energy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abou Jaoude L, Castaldi P, Nassif N, Pinna MV, Garau G (2020) Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci Total Environ 711:134511. https://doi.org/10.1016/j.scitotenv.2019.134511

    CAS  Article  Google Scholar 

  2. Addinsoft (2020) XLSTAT statistical and data analysis solution. USA, New York https://www.xlstat.com

    Google Scholar 

  3. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

    CAS  Article  Google Scholar 

  4. Agbeve SK, Carboo D, Duker-Eshun G, Afful S, Ofosu P (2013) Burden of organochlorine pesticide residues in the root of Cryptolepis sanguinolenta, antimalarial plant used in traditional medicine in Ghana. Eur Chem Bull 2:936–941. https://doi.org/10.17628/ECB.2013.2.936-941

    CAS  Article  Google Scholar 

  5. Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G (2014) Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol 44:2531–2576. https://doi.org/10.1080/10643389.2013.829764

    CAS  Article  Google Scholar 

  6. Aislabie J, Lloyd-Jones G (1995) A review of bacterial degradation of pesticides. Aust J Soil Res 33:925–942. https://doi.org/10.1071/SR9950925

    CAS  Article  Google Scholar 

  7. Alcántara MT, Gómez J, Pazos M, Sanromán MA (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater 166:462–468. https://doi.org/10.1016/j.jhazmat.2008.11.050

    CAS  Article  Google Scholar 

  8. An CJ, Huang GH, Wei J, Yu H (2011) Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res 45:5501–5510. https://doi.org/10.1016/j.watres.2011.08.011

    CAS  Article  Google Scholar 

  9. Andersen A, Kasperlik-Zaluska AA, Warren DJ (1999) Determination of mitotane (o,p’-DDD) and its metabolites o,p’-DDA and o,p’-DDE in plasma by high-performance liquid chromatography. Ther Drug Monit 21:355–359. https://doi.org/10.1097/00007691-199906000-00020

    CAS  Article  Google Scholar 

  10. Annesini MC, Memoli A, Petralito S (2000) Kinetics of surfactant-induced release from liposomes: a time-dependent permeability model. J Membr Sci 180:121–131. https://doi.org/10.1016/S0376-7388(00)00524-X

    CAS  Article  Google Scholar 

  11. Antonkiewicz J, Kołodziej B, Bielińska EJ (2016) The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res 23:9505–9517. https://doi.org/10.1007/s11356-016-6175-6

    CAS  Article  Google Scholar 

  12. Arnoult S, Obeuf A, Béthencourt L, Mansard MC, Brancourt-Hulmel M (2015) Miscanthus clones for cellulosic bioethanol production: relationships between biomass production, biomass production components, and biomass chemical composition. Ind Crop Prod 63:316–328. https://doi.org/10.1016/j.indcrop.2014.10.011

    CAS  Article  Google Scholar 

  13. Astanina L, Dylevskaya S, Korneeva Z (2013) Implementation of the Stockholm, Rotterdam and Basel Conventions in Kazakhstan (overview), Almaty

  14. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166. https://doi.org/10.1016/j.jenvman.2014.12.045

    CAS  Article  Google Scholar 

  15. Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Bae JH, Kim KH, Myung H, Oh BT (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediation 17:515–520. https://doi.org/10.1080/15226514.2013.862209

    CAS  Article  Google Scholar 

  16. Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8:1500–1511. https://doi.org/10.1007/s12155-015-9688-9

    CAS  Article  Google Scholar 

  17. Beal JL, Christensen BV, Colby AB (1954) The effect of selected chemicals on the alkaloidal yield of Datura tatula Linné. J Am Pharm Assoc (Baltim) 43:282–287. https://doi.org/10.1002/jps.3030430509

    CAS  Article  Google Scholar 

  18. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

    CAS  Article  Google Scholar 

  19. Caslin B, Finnan J, Easson L (2010) Miscanthus best practice guidelines, Agriculture and Food Development Authority, Teagasc, and Agri-Food and Bioscience Institute ISBN: 1-84170-574-8

  20. Chai Y, Currie RJ, Davis JW, Wilken M, Martin GD, Fishman VN, Ghosh U (2012) Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 46:1035–1043. https://doi.org/10.1021/es2029697

    CAS  Article  Google Scholar 

  21. Choi Y, Cho YM, Luthy RG (2014) In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. Column studies. Environ Sci Technol 48:1835–1842. https://doi.org/10.1021/es403335g

    CAS  Article  Google Scholar 

  22. Chorom M, Parnian A, Jaafarzadeh N (2012) Nickel removal by the aquatic plant (Ceratophyllum demersum L.). Int J Environ Sci Dev 3:372. https://doi.org/10.7763/ijesd.2012.v3.250

    CAS  Article  Google Scholar 

  23. CITI (1992) Chemicals Inspection & Testing Institute. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan, Japan Chemical Industry Ecology - Toxicology and Information Center ISBN: 4-89074-101-1

  24. Stockholm Convention (2019) Stockholm Convention - Home page [online] http://chm.pops.int/

  25. Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9:57–77. https://doi.org/10.1111/gcbb.12364

    CAS  Article  Google Scholar 

  26. Crommentuijn T, Sijm D, De Bruijn J, Van Leeuwen K, Van de Plassche E (2000) Maximum permissible and negligible concentrations for some organic substances and pesticides. J Environ Manag 58:297–312. https://doi.org/10.1006/jema.2000.0334

    Article  Google Scholar 

  27. Danielewicz D, Dybka-Stępień K, Surma-Ślusarska B (2018) Processing of Miscanthus × giganteus stalks into various soda and Kraft pulps. Part I: chemical composition, types of cells and pulping effects. Cellulose 25:6731–6744. https://doi.org/10.1007/s10570-018-2023-9

    CAS  Article  Google Scholar 

  28. De Bruijn J, Busser F, Seinen W, Hermens J (1989) Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method. Environ Toxicol Chem 8:499–512. https://doi.org/10.1002/etc.5620080607

    Article  Google Scholar 

  29. Elzobair KA, Stromberger ME, Ippolito JA (2016) Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere 142:114–119. https://doi.org/10.1016/j.chemosphere.2015.03.018

    CAS  Article  Google Scholar 

  30. EPA (2003) Estimation Program Interface (EPI) Suite, version 4.10, Office of Pollution Prevention & Toxics (OPPT) and Syracuse Research Corporation

  31. FAO (2014a) Obsolete Pesticides: Inventory and environmental risk assessment [online]. http://www.fao.org/agriculture/crops/obsolete-pesticides/how-deal/inventory-risk/en

  32. FAO (2014b) World Reference Base for Soil Resources 2014: International soil classification systems for naming soils and creating legends for soil maps (Update 2015), World Soil Resources Reports No 106. ISBN: 978-92-5-108369-7

  33. Gavrilenko VF, Ladygina ME, Khandobina LM (1975) Large practical workshop on plant physiology. Photosynthesis breathing., Moscow: High School

  34. Germaine KJ, Otieno N, Culhane J, Menton C, Keogh E, Brazil D, Dowling DN (2012) Microbial communities associated with the bio-energy plant Miscanthus, in: 28th New Phytologists Symposium: Functions and Ecology of the Plant Microbiome. New Phytologist Organisation

  35. Gobas FAPC, Kelly BC, Arnot JA (2003) Quantitative structure activity relationships for predicting the bioaccumulation of POPs in terrestrial food-webs. QSAR Comb Sci 22:329–336. https://doi.org/10.1002/qsar.200390022

    CAS  Article  Google Scholar 

  36. Gonzalez M, Miglioranza KSB, Aizpún JE, Isla FI, Peña A (2010) Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere 81:351–358. https://doi.org/10.1016/j.chemosphere.2010.07.021

    CAS  Article  Google Scholar 

  37. GOST 17.4.4.02–84 (1984) Protection of nature. Soil. Methods for sampling and preparation of soil for chemical, bacteriological, helminthological analysis

  38. Hansch C, Leo A, Hoekman DH (1995) Exploring QSAR: fundamentals and applications in chemistry and biology 557. American Chemical Society Washington, DC

    Google Scholar 

  39. Howard PH, Meylan WM (1997) Prediction of physical properties, transport, and degradation for environmental fate and exposure assessments. Quant Struct Relationships Environ Sci 7:185–205

    Google Scholar 

  40. HSDB (2009) Bank, hazardous substances data. Available in: http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen? HSDB. Access Oct.

  41. IPNI (2019) International Plant Names Index. The International Plant Names Index Collaborators. Checklist dataset https://doi.org/10.15468/uhllmw accessed via GBIF.org on 2020-10-06

  42. Khalid S, Shahid M, Murtaza B, Bibi I, Asif Naeem M, Niazi NK (2020) A critical review of different factors governing the fate of pesticides in soil under biochar application. Sci Total Environ 711:134645. https://doi.org/10.1016/j.scitotenv.2019.134645

    CAS  Article  Google Scholar 

  43. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    CAS  Article  Google Scholar 

  44. Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22:11648–11657. https://doi.org/10.1007/s11356-015-4439-1

    CAS  Article  Google Scholar 

  45. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227. https://doi.org/10.1016/S0961-9534(00)00032-5

    CAS  Article  Google Scholar 

  46. Meylan WM, Howard PH (2005) Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry’s law constants. Chemosphere 61:640–644. https://doi.org/10.1016/j.chemosphere.2005.03.029

    CAS  Article  Google Scholar 

  47. MHRK and MEPRK (2004) Standards for maximum permissible concentrations of harmful substances, pests and other biological substances polluting the soil, approved by a joint order of the Ministry of Health of the Republic of Kazakhstan dated January 30, 2004 No. 99 and the Ministry of Environmental Protection of the Republic of Kazakhstan dated January 27, 2004 No. 21-P

  48. Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ 586:576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020

    CAS  Article  Google Scholar 

  49. Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv Mater Sci Eng 2014:1–12. https://doi.org/10.1155/2014/715398

    Article  Google Scholar 

  50. Nurzhanova A, Pidlisnyuk V, Sailaukhanuly Y, Kenessov B, Trogl J, Aligulova R, Kalugin S, Nurmagambetova А, Abit K, Stefanovska T, Erickson L (2017) Phytoremediation of military soil contaminated by metals and organochlorine pesticides using Miscanthus. Comm Appl Biol Sci 82:61–68

    Google Scholar 

  51. Nurzhanova A, Pidlisnyuk V, Abit K, Nurzhanov C, Kenessov B, Stefanovska T, Erickson L (2019) Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environ Sci Pollut Res 26:13320–13333. https://doi.org/10.1007/s11356-019-04707-z

    CAS  Article  Google Scholar 

  52. Paul A, Ghosh C, Boettinger WJ (2011) Diffusion parameters and growth mechanism of phases in the Cu-Sn system. Metall Mater Trans A Phys Metall Mater Sci 42:952–963. https://doi.org/10.1007/s11661-010-0592-9

    CAS  Article  Google Scholar 

  53. Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. CRC Crit Rev Plant Sci 33(1):1–19. https://doi.org/10.1080/07352689.2014.847616

    Article  Google Scholar 

  54. Pidlisnyuk V, Erickson L, Stefanovska T, Popelka J, Hettiarachchi G, Davis L, Trogl J (2019) Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus x giganteus. Environ Pollut 249:330–337. https://doi.org/10.1016/j.envpol.2019.03.018

    CAS  Article  Google Scholar 

  55. Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot (Irvine, Calif) 7:734–744. https://doi.org/10.4236/jep.2016.75066

    CAS  Article  Google Scholar 

  56. Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518. https://doi.org/10.1007/s11270-011-0878-6

    CAS  Article  Google Scholar 

  57. Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222. https://doi.org/10.1016/j.jenvman.2016.12.068

    CAS  Article  Google Scholar 

  58. Ren C, Wang T, Xu Y, Deng J, Zhao F, Yang G, Han X, Feng Y, Ren G (2018) Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. For Ecol Manag 409:170–178. https://doi.org/10.1016/j.foreco.2017.11.011

    Article  Google Scholar 

  59. Saito H, Koyasu J, Shigeoka T (1993) Cytotoxicity of anilines and aldehydes to goldfish GFS cells and relationships with 1-octanol/water partition coefficients. Chemosphere 27:1553–1560. https://doi.org/10.1016/0045-6535(93)90249-5

    CAS  Article  Google Scholar 

  60. Sangster J (1993) LOGKOW Databank. A databank of evaluated octanol-water partition coefficients (log P) on microcomputer diskette

  61. Sharma A, Kumar V, Handa N, Bali S, Kaur R, Khanna K, Thukral AK, Bhardwaj R (2018) Potential of endophytic bacteria in heavy metal and pesticide detoxification. Springer Singapore:307–336. https://doi.org/10.1007/978-981-10-5514-0_14

  62. Sibley JL, Yang X, Lu W et al (2018) Effects of a nonionic surfactant on growth, photosynthesis, and transpiration of New Guinea impatiens in the greenhouse. J Environ Hortic 36:73–81. https://doi.org/10.24266/0738-2898-36.2.73

    CAS  Article  Google Scholar 

  63. Simpson CD, Wilcock RJ, Smith TJ, Wilkins AL, Langdon AG (1995) Determination of octanol-water partition coefficients for the major components of technical chlordane. Bull Environ Contam Toxicol 55:149–153. https://doi.org/10.1007/BF00212402

    CAS  Article  Google Scholar 

  64. Smith AG (1991) Chlorinated hydrocarbon insecticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San Diego, pp 731–915

  65. ST RK 2011-2010 (2010) Water, food, feed and tobacco. Determination of organochlorine pesticides by chromatographic methods

  66. ST RK 2131–2011 (2012) Soil quality. Determination of organochlorine pesticides and polychlorinated biphenyl content. Gas chromatographic method with electron capture detection

  67. Stowe BB (1958) Growth promotion in pea epicotyl sections by fatty acid esters author(s): Bruce B. Stowe Published by: American Association for the Advancement of Science Stable 128:421–423. http://www.jstor.org/stable/1755080

  68. Straub D, Yang H, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. J Exp Bot 64:4603–4615. https://doi.org/10.1093/jxb/ert276

    CAS  Article  Google Scholar 

  69. Tarla DN, Erickson LE, Hettiarachchi GM, Amadi SI, Galkaduwa M, Davis LC, Nurzhanova A, Pidlisnyuk V (2020) Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci 10:1217. https://doi.org/10.3390/app10041217

    CAS  Article  Google Scholar 

  70. Turner BC, Taylor AW, Edwards WM (1972) Dieldrin and heptachlor residues in soybeans 1. Agron J 64:237–239. https://doi.org/10.2134/agronj1972.00021962006400020032x

    CAS  Article  Google Scholar 

  71. Van de Plassche EJ (1994) Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning. RIVM Rapp:679101012

  72. Velásquez JA, Ferrando F, Farriol X, Salvadó J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37:269–278. https://doi.org/10.1007/s00226-003-0182-8

    CAS  Article  Google Scholar 

  73. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges: overview on background, aims and scope of the series. Environ Sci Pollut Res 15(5):363–393. https://doi.org/10.1007/s11356-008-0024-1

    CAS  Article  Google Scholar 

  74. White JC, Kottler BD (2002) Citrate-mediated increase in the uptake of weathered 2,2-bis( p -chlorophenyl)1,1-dichloroethylene residues by plants. Environ Toxicol Chem 21:550–556. https://doi.org/10.1002/etc.5620210312

    CAS  Article  Google Scholar 

  75. WHO (1991) Endrin health and safety guide. World Health Organization

  76. Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762. https://doi.org/10.1016/j.envint.2005.02.004

    CAS  Article  Google Scholar 

  77. Yehya S, Delannoy M, Fournier A, Baroudi M, Rychen G, Feidt C (2017) Activated carbon, a useful medium to bind chlordecone in soil and limit its transfer to growing goat kids. PLoS One 12:e0179548. https://doi.org/10.1371/journal.pone.0179548

    CAS  Article  Google Scholar 

  78. Zeeb BA, Amphlett JS, Rutter A, Reimer K (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB)- contaminated soil. Int J Phytoremediation 8:199–221. https://doi.org/10.1080/15226510600846749

    CAS  Article  Google Scholar 

  79. Zhang N, Yang Y, Tao S, Liu Y, Shi KL (2011) Sequestration of organochlorine pesticides in soils of distinct organic carbon content. Environ Pollut 159:700–705. https://doi.org/10.1016/j.envpol.2010.12.011

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Mr. Ethan N. Doung, Canada for assistance with proof reading.

Funding

The research was supported by Program No. BR05236379, Project No. AP05131473 CS MES of the Kazakhstan, NATO SPS Multiyear Research Project G4687, and  Research Infrastructures NanoEnviCz, Project No. LM2018124, the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aigerim Mamirova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Elena Maestri

Supplementary information

ESM 1

(DOCX 122 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mamirova, A., Pidlisnyuk, V., Amirbekov, A. et al. Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon. Environ Sci Pollut Res 28, 16092–16106 (2021). https://doi.org/10.1007/s11356-020-11609-y

Download citation

Keywords

  • Miscanthus sinensis And.
  • Phytoremediation
  • Organochlorine pesticides
  • Sequestration
  • Tween 20
  • Activated carbon