Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073
Article
Google Scholar
Ahmed MK, Baki MA, Kundu GK, Islam MS, Islam MM, Hossain MM (2016) Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springer Plus 5(1):1–12
Google Scholar
Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881
CAS
Google Scholar
Anawar HM, Garcia-Sanchez A, Santa Regina I (2008) Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere 70(8):1459–1467
CAS
Google Scholar
Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35(9):2223–2229
CAS
Google Scholar
Antonoglou O, Moustaka J, Adamakis IDS, Sperdouli I, Pantazaki AA, Moustakas M, Dendrinou-Samara C (2018) Nanobrass Cu Zn nanoparticles as foliar spray nonphytotoxic fungicides. ACS Appl Mater Interfaces 10(5):4450–4461
CAS
Google Scholar
Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362
CAS
Google Scholar
Aruliah R, Selvi A, Theertagiri J, Ananthaselvam A, Kumar KS, Madhavan J, Rahman P (2019) Integrated remediation processes towards heavy metal removal/recovery from various environments-a review. Front Environ Sci 7:66
Google Scholar
Asad SA, Young SD, West HM (2015) Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella. Sci Total Environ 511:21–27
CAS
Google Scholar
Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727
CAS
Google Scholar
Bell TH, Cloutier-Hurteau B, Al-Otaibi F, Turmel MC, Yergeau E, Courchesne F, St-Arnaud M (2015) Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. Environ Microbiol 7(8):3025–3038
Google Scholar
Bennisse R, Labat M, Elasli A, Brhada F, Chandad F, Liegbott PP, Qatibi AI (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20(7):759–766
CAS
Google Scholar
Burges A, Alkorta I, Epelde L, Garbisu C (2017) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytorem 20:384–397
Google Scholar
Calheiros CS, Rangel AO, Castro PM (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55(3):404–414
CAS
Google Scholar
Cavaleri F (2015) Review of amyotrophic lateral sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 85:779–790
CAS
Google Scholar
Chand S, Singh S, Singh VK, Patra DD (2015) Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation. Environ Sci Pollut Res 22(10):7470–7475
CAS
Google Scholar
Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. Adv Bot Res 83:189–221
CAS
Google Scholar
Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediation of soil trace elements. Trace Elems Soil:311–352
Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29(1):127–136
CAS
Google Scholar
Chen Y, Liu Y, Ding Y, Wang X, Xu J (2015) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ Cult (PCTOC) 121(2):389–396
CAS
Google Scholar
Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598
CAS
Google Scholar
Cherfi A, Abdoun S, Gaci O (2014) Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem Toxicol 70:48–53
CAS
Google Scholar
Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Huang X (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3):665–676
CAS
Google Scholar
Copat C, Grasso A, Fiore M, Cristaldi A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M (2018) Trace elements in seafood from the Mediterranean Sea: an exposure risk assessment. Food ChemToxicol 115:13–19
CAS
Google Scholar
Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326
Google Scholar
Cristaldi A, Conti GO, Cosentino SL, Mauromicale G, Copat C, Grasso A, Ferrante M (2020) Phytoremediation potential of Arundo donax (Giant reed) in contaminated soil by heavy metals. Environ Res:109427
Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309
CAS
Google Scholar
Deng H, Li M, Chen Y, Luo Y, Yu F (2010) A new discovered manganese hyperaccumulator-Polygonum pubescens Blume. Fresenius Environ Bull 19(1):94–99
CAS
Google Scholar
Dinh N, van der Ent A, Mulligan DR, Nguyen AV (2018) Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ Exp Bot 147:1–12
CAS
Google Scholar
Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168
CAS
Google Scholar
Fakhri Y, Saha N, Miri A, Baghaei M, Roomiani L, Ghaderpoori M, Bay A (2018) Metal concentrations in fillet and gill of parrotfish (Scarus ghobban) from the Persian Gulf and implications for human health. Food Chem Toxicol 118:348–354
CAS
Google Scholar
Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151
CAS
Google Scholar
FAO (Food and Agriculture Organization) (2014) The State of World Fisheries and Aquaculture 2014. Food and Agriculture Organization of United Nation, Rome pp 223
Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102
CAS
Google Scholar
Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants–implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119(1):176–183
CAS
Google Scholar
Ferrante M, Napoli S, Grasso A, Zuccarello P, Cristaldi A, Copat C (2019) Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: a health risk assessment. Food Chem Toxicol 126:322–331
CAS
Google Scholar
Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Conti GO, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M (2020) Environmental and occupational risk factors of amyotrophic lateral sclerosis: a population-based case-control study. Int J Environ Res Public Health 17:2882
Google Scholar
Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly M (2000) Reduction of fe (III), cr (VI), U (VI), and tc (VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011
CAS
Google Scholar
Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017) Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytorem 19(11):992–999
CAS
Google Scholar
Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytorem 20(5):440–447
CAS
Google Scholar
Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):201
Google Scholar
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci 24(2):165–176
CAS
Google Scholar
García JAL, Grijalbo L, Ramos B, Fernández-Piñas F, Rodea-Palomares I, Gutierrez-Mañero FJ (2019) Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere 90:2654–2661
Google Scholar
García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223(2):559–572
Google Scholar
Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18
Google Scholar
Gupta SK, Ansari FA, Nasr M, Chabukdhara M, Bux F (2018) Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban, South Africa. Environ Monit Assess 190(3):151
Google Scholar
Gupta N, Yadav KK, Kumar V, Kumar S, Chadd RP, Kumar A (2019) Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration-a review. Sci Total Environ 651:2927–2942
CAS
Google Scholar
Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16
CAS
Google Scholar
Houda Z, Bejaoui Z, Albouchi A, Gupta DK, Corpas FJ (2016) Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni). Environ Monit Assess 188(2):99
Google Scholar
Hu W, Huang B, Tian K, Holm PE, Zhang Y (2017) Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: levels, transfer and health risk. Chemosphere 167:82–90
CAS
Google Scholar
Huang D, Qin X, Peng Z, Liu Y, Gong X, Zeng G, Hu Z (2018) Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicol Environ Saf 153:229–237
CAS
Google Scholar
Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari river basin. Appl Water Sci 7(8):4539–4548
CAS
Google Scholar
Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364
Google Scholar
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72
Google Scholar
Jan FA, Ishaq M, Khan S, Ihsanullah I, Ahmad I, Shakirullah M (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater 179:612–621
CAS
Google Scholar
Jaskulak M, Grobelak A, Grosser A, Vandenbulcke F (2019) Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicol Environ Saf 181:508–517
CAS
Google Scholar
Ji P, Sun T, Song Y, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768
CAS
Google Scholar
Jin XF, Liu D, Islam E, Mahmood Q, Yang XE, He ZL, Stoffella PJ (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32(10):1642–1656
CAS
Google Scholar
Jin Y, Liu W, Li XL, Shen SG, Liang SX, Liu C, Shan L (2016) Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol Eng 95:25–29
Google Scholar
Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, Ma D, Zhao W, Wang Y, Fang L (2020) Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of cu contaminated soils. Chemosphere 254:126724
CAS
Google Scholar
Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002
CAS
Google Scholar
Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Curr Sci:888–894
Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039
CAS
Google Scholar
Katoh M, Risky E, Sato T (2017) Immobilization of lead migrating from contaminated soil in rhizosphere soil of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa) using hydroxyapatite. Int J Environ Res Public Health 14(10):1273
Google Scholar
Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28(1):61–69
CAS
Google Scholar
Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268
CAS
Google Scholar
Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458
CAS
Google Scholar
Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799
CAS
Google Scholar
Kim M, Kim WS, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67(4):837–848
CAS
Google Scholar
Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939
CAS
Google Scholar
Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12(1):1–14
Google Scholar
Kumar R, Srivastava M, Dubey NK (2007) Evaluation of Cymbopogon martinii oil extract for control of postharvest insect deterioration in cereals and legumes. J Food Prot 70(1):172–178
CAS
Google Scholar
Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134
CAS
Google Scholar
Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kour D (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal Biology. Springer, Cham, pp 437–461
Google Scholar
Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Malav LC (2019b) Hazardous heavy metals contamination of vegetables and food chain: role of sustainable remediation approaches-a review. Environ Res 179:108792
CAS
Google Scholar
Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17(7):2179
CAS
Google Scholar
Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406
CAS
Google Scholar
Lajayer BA, Moghadam NK, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26(9):8468–8484
Google Scholar
Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2(1):5
Google Scholar
LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32(11–12):514–520
CAS
Google Scholar
Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15–16):4173–4182
CAS
Google Scholar
Li JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39(4):1262–1268
CAS
Google Scholar
Liang SX, Jin Y, Liu W, Li X, Shen SG, Ding L (2017) Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: results of a one-year field-scale experiment. J Environ Manag 190:170–175
CAS
Google Scholar
Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368(2–3):814–822
CAS
Google Scholar
Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11(3):e0149750
Google Scholar
Liu LP, Liao ZP, Yin D, Li WD, Liu D, Li Q, He M (2010) The protective effects of Polygonum multiflorum stilbeneglycoside preconditioning in an ischemia/reperfusion model of HUVECs. Acta Pharmacol Sin 31(4):405–412
Google Scholar
Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540
Google Scholar
Loreau M (2001) Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proc R Soc Lond Ser B Biol Sci 268(1464):303–309
CAS
Google Scholar
Lorestani B, Yousefi N, Cheraghi M, Farmany A (2013) Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Environ Monit Assess 185(12):10217–10223
CAS
Google Scholar
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121
CAS
Google Scholar
Mahmood Q, Mirza N, Shaheen S (2015) Phytoremediation using algae and macrophytes: I. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 265–289
Google Scholar
Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872
CAS
Google Scholar
Mao C, Song Y, Chen L, Ji J, Li J, Yuan X, Theiss F (2019) Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 175:339–348
CAS
Google Scholar
Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261(1–2):199–208
CAS
Google Scholar
Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74(5):642–647
CAS
Google Scholar
Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116(3):278–283
CAS
Google Scholar
Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybylowicz W, Glowacka E (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85
Google Scholar
Milić D, Luković J, Ninkov J, Zeremski-Škorić T, Zorić L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7(2):307–317
Google Scholar
Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24(9):7921–7937
CAS
Google Scholar
Mishra S, Tiwary D, Ohri A, Agnihotri AK (2018) Assessment of groundwater quality using WQI and GIS near the Karsara municipal landfill site, Varanasi, India. Arab J Geosci 11(11):252
Google Scholar
Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L.(duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1–3):81–89
CAS
Google Scholar
Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of copper by two species of aquatic plants. In Int Conf Environ Sci Eng 8:115–118
Google Scholar
Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf 147:206–216
CAS
Google Scholar
Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150
CAS
Google Scholar
Mwakalapa EB, Mmochi AJ, Müller MHB, Mdegela RH, Lyche JL, Polder A (2018) Occurrence and levels of persistent organic pollutants (POPs) in farmed and wild marine fish from Tanzania. A Pilot Study. Chemosphere 191:438–449
CAS
Google Scholar
Mwakalapa EB, Simukoko CK, Mmochi AJ, Mdegela RH, Berg V, Müller MHB, Polder A (2019) Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. Chemosphere 224:176–186
CAS
Google Scholar
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216
CAS
Google Scholar
Nejad ZD, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40(3):927–953
Google Scholar
Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23(11):10630–10643
CAS
Google Scholar
Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6(2):182–186
Google Scholar
Orisakwe OE, Nduka JK, Amadi CN, Dike DO, Bede O (2012) Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, south eastern, Nigeria. Chem Cent J 6:77
CAS
Google Scholar
Pacwa-Płociniczak M, Płociniczak T, Yu D, Kurola JM, Sinkkonen A, Piotrowska-Seget Z, Romantschuk M (2018) Effect of Silene vulgaris and heavy metal pollution on soil microbial diversity in long-term contaminated soil. Water Air Soil Pollut 229(1):13
Google Scholar
Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126
CAS
Google Scholar
Pandey VC (2013) Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng 57:336–341
Google Scholar
Park JM, Lee JS, Lee JU, Chon HT, Jung MC (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J Geochem Explor 88(1–3):134–138
CAS
Google Scholar
Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP (2020) Improvement of rice plant productivity by native Cr (VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240:124895
CAS
Google Scholar
Pilon-Smits EAH, De Souza MP, Hong G, Amini A, Bravo RC, Payabyab ST, Terry N (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28(3):1011–1018
CAS
Google Scholar
Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146 Processes: a theoretical model. Proc R Soc Lond B268:303–309
Google Scholar
Radziemska M, Vaverková MD, Baryła A (2017) Phytostabilization—management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health 14(9):958
Google Scholar
Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970
CAS
Google Scholar
Rai PK (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:100393
Google Scholar
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385
CAS
Google Scholar
Ravindra K, Mor S (2019) Distribution and health risk assessment of arsenic and selected heavy metals in groundwater of Chandigarh, India. Environ Pollut 250:820–830
CAS
Google Scholar
Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Lessons learned: are engineered nanomaterials toxic to terrestrial plants. Sci Total Environ 568:470–479
CAS
Google Scholar
Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation. Environ Pollut 144(3):976–984
CAS
Google Scholar
Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Exp Bot 58(1–3):206–215
CAS
Google Scholar
Saha D, Shukla RR (2013) Genesis of arsenic-rich groundwater and the search for alternative safe aquifers in the Gangetic plain, India. Water Environ Res 85(12):2254–2264
CAS
Google Scholar
Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean: Soil Air Water 39(8):735–741
CAS
Google Scholar
Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25(1):1–11
CAS
Google Scholar
Saria JA (2016) Assessment of health risks associated with concentrations of heavy metals in fish from the coast of Tanzania. Assessment 2(11)
Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138
CAS
Google Scholar
Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721
CAS
Google Scholar
Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67(9):4215–4224
CAS
Google Scholar
Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774
Google Scholar
Sharma S, Kaur J, Nagpal AK, Kaur I (2016) Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar wetland and its environs. Environ Monit Assess 188:506
Google Scholar
Sharma S, Nagpal AK, Kaur I (2018) Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem 255:15–22
CAS
Google Scholar
Sharma GK, Jena RK, Hota S, Kumar A, Ray P, Fagodiya RK, Ray SK (2020) Recent development in bioremediation of soil pollutants through biochar for environmental sustainability. In biochar applications in agriculture and environment management springer, Cham (123-140)
Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65(4):1125–1139
CAS
Google Scholar
Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96
CAS
Google Scholar
Singh J, Lee BK (2018) Effects of Nano-TiO2 particles on bioaccumulation of 133Cs from the contaminated soil by soybean (Glycine max). Process Saf Environ Prot 116:301–311
CAS
Google Scholar
Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62(1):118–127
CAS
Google Scholar
Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611
Google Scholar
Srivastav A, Yadav KK, Yadav S, Gupta N, Singh JK, Katiyar R, Kumar V (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari A, Gill S, Gill R, Lanza RG, Newman L (eds) Phytoremediation. Springer, Cham, pp 383–401
Google Scholar
Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364(1–3):24–31
CAS
Google Scholar
Srivastava S, Sounderajan S, Udas A, Suprasanna P (2014) Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol Eng 73:297–301
Google Scholar
Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22(20):15386–15415
Google Scholar
Su H, Fang Z, Tsang PE, Fang J, Zhao D (2016) Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environ Pollut 214:94–100
CAS
Google Scholar
Subhashini V, Swamy AVVS (2014) Phytoremediation of cadmium and chromium contaminated soils by Cyperus rotundus L. Am Int J Res Sci Technol Eng Math 6:97–101
Google Scholar
Sun Y, Li Y, Xu Y, Liang X, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105:200–206
Google Scholar
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31
Google Scholar
Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432
CAS
Google Scholar
Tian LY, Yang JY, Huang JH (2015) Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environ Sci Pollut Res 22(12):9215–9223
CAS
Google Scholar
Upadhyay MK, Gautam A, Mallick S, Srivastava S (2017) A successive application approach for effective utilization of three aquatic plants in arsenic removal. Water Air Soil Pollut 228(2):54
Google Scholar
USEPA (United State Environmental Protection Agency) (2000) Introduction to phytoremediation.Cincinnati, Ohio EPA 600/R-99/107
Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, van der Lelie D (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794
CAS
Google Scholar
Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139(2):362–371
Google Scholar
Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18
Google Scholar
Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600
CAS
Google Scholar
Wang L, Lin H, Dong Y, Li B, He Y (2020a) Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. Chemosphere 240:124891
CAS
Google Scholar
Wang L, Hou D, Cao Y, Ok YS, Tack FM, Rinklebe J, O’Connor D (2020b) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281
CAS
Google Scholar
Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Sonne C (2021) A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater 403:123658
CAS
Google Scholar
Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140(1):124–135
CAS
Google Scholar
Yadav KK, Gupta N, Kumar V, Singh JK (2017a) Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian J Environ Prot 37(1):65
CAS
Google Scholar
Yadav KK, Singh JK, Gupta N, Kumar V (2017b) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757
CAS
Google Scholar
Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298
Google Scholar
Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351
CAS
Google Scholar
Yang SX, Liao B, Yang ZH, Chai LY, Li JT (2016a) Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci Total Environ 562:427–434
CAS
Google Scholar
Yang Z, Fang Z, Zheng L, Cheng W, Tsang PE, Fang J, Zhao D (2016b) Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol Environ Saf 132:224–230
CAS
Google Scholar
Yang J, Yang J, Huang J (2017) Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–a field case. Ecol Eng 109:35–40
Google Scholar
Yang C, Ho Y-N, Inoue C, Chien M-F (2020) Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci Total Environ 740:140137
CAS
Google Scholar
Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37(8):1062–1076
CAS
Google Scholar
Yılmaz AB, Sangün MK, Yağlıoğlu D, Turan C (2010) Metals (major, essential to non-essential) composition of the different tissues of three demersal fish species from Iskenderun Bay, Turkey. Food Chem 123(2):410–415
Google Scholar
Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2–3):456–464
CAS
Google Scholar
Yu H, Ling N, Wang T, Zhu C, Wang Y, Wang S, Gao Q (2019) Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res 185:61–69
Google Scholar
Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66(2):242–248
Google Scholar
Zhang R, Zhang N, Fang Z (2018) In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci Technol 77(6):1622–1631
CAS
Google Scholar
Zurayk R, Sukkariyah B, Baalbaki R, Abi Ghanem D (2002) Ni Phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139(1–4):355–364
CAS
Google Scholar
Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-a review. Plant Physiol Biochem 110:236–264
CAS
Google Scholar