Skip to main content
Log in

Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution is a prominent environment problem, and great interests have been developed towards the molecular mechanism of Cd accumulation in plants. In this study, we conducted combined transcriptomic, proteomic and biochemical approaches to explore the detoxification of a Cd-hyperaccumulating turnip landrace exposed to 5 μM (T5) and 25 μM (T25) Cd treatments. A total of 1090 and 2111 differentially expressed genes (DEGs) and 161 and 303 differentially expressed proteins (DEPs) were identified in turnips under T5 and T25, respectively. However, poor correlations were observed in expression changes between mRNA and protein levels. The enriched KEGG pathways of DEGs with a high proportion (> 80%) of upregulated genes were focused on the flavonoid biosynthesis, sulphur metabolism and glucosinolate biosynthesis pathways, whereas those of DEPs were enriched on the glutathione metabolism pathway. This result suggests that these pathways contribute to Cd detoxification in turnips. Furthermore, induced antioxidant enzymes, heat stock proteins and stimulated protein acetylation modification seemed to play important roles in Cd tolerance in turnips. In addition, several metal transporters were found responsible for the Cd accumulation capacity of turnips. This study may serve as a basis for breeding low-Cd–accumulating vegetables for foodstuff or high-Cd–abstracting plants for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The clean reads of RNA sequencing results were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: PRJNA667543), which will be released on December 30, 2020.

References

  • Ahmad P, Abdel Latef AA, Abd Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Article  Google Scholar 

  • Asad SA, Young S, West H (2013) Effect of nickel and cadmium on glucosinolate production in Thlaspi caerulescens. Pak J Bot 45:495–500

    Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95

    Article  CAS  Google Scholar 

  • Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L (2009) TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Gen Genomics 281:109–123

    Article  CAS  Google Scholar 

  • Chen Y, Zhi J, Zhang H, Li J, Zhao Q, Xu J (2017) Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS One 12:e0184681

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Costa GB, Simioni C, Pereira DT, Ramlov F, Maraschin M, Chow F, Horta PA, Bouzon ZL, Schmidt EC (2017) The brown seaweed Sargassum cymosum: changes in metabolism and cellular organization after long-term exposure to cadmium. Protoplasma 254:817–837

    Article  CAS  Google Scholar 

  • Cui YC, Xu GY, Wang ML, Yu Y, Li MJ, da Rocha PSCF, Xia XJ (2013) Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress. Plant Cell Tiss Org 113:331–340

    Article  CAS  Google Scholar 

  • Cui Y, Wang M, Yin X, Xu G, Song S, Li M, Liu K, Xia X (2019) OsMSR3, a small heat shock protein, confers enhanced tolerance to copper stress in Arabidopsis thaliana. Int J Mol Sci 20:6096

    Article  CAS  Google Scholar 

  • Davis MA, Boyd RS (2000) Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol 146:211–217

    Article  CAS  Google Scholar 

  • Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA 12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  CAS  Google Scholar 

  • Diener AC, Gaxiola RA, Fink GR (2001) Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13:1625–1637

    Article  CAS  Google Scholar 

  • Eren E, Arguello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P-IB-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    Article  CAS  Google Scholar 

  • Estrela GR, Wasinski F, Felizardo RJF, Souza LL, Camara NOS, Bader M, Araujo RC (2017) MATE-1 modulation by kinin B1 receptor enhances cisplatin efflux from renal cells. Mol Cell Biochem 428:101–108

    Article  CAS  Google Scholar 

  • Fuleky G, Barna S (2013) Rapid plant biotest to assess the heavy metal pollution of soil. Fresenius Environ Bull 22:1983–1992

    CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–U130

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Al Mahmud J, Rahman A, Inafuku M, Oku H, Fujita M (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200

    Article  CAS  Google Scholar 

  • He QX (2013) Research progress of screening cadmium hyperaccumulators. Environ Prot Circ Econ 33:46–49

    CAS  Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447

    Article  CAS  Google Scholar 

  • Huang HJ, Lu JB, Li Q, Bao YY, Zhang CX (2018) Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. J Proteome 172:25–35

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  Google Scholar 

  • Kazemi-Dinan A, Thomaschky S, Stein RJ, Kramer U, Muller C (2014) Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628–639

    Article  CAS  Google Scholar 

  • Kazemi-Dinan A, Sauer J, Stein RJ, Kramer U, Muller C (2015) Is there a trade-off between glucosinolate-based organic and inorganic defences in a metal hyperaccumulator in the field? Oecologia 178:369–378

    Article  Google Scholar 

  • Keum YS, Jeong WS, Kong ANT (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res Fundam Mol Mech Mutagen 555:191–202

    Article  CAS  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2009a) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8:400–417

    Article  CAS  Google Scholar 

  • Kieffer P, Schroder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009b) Proteomic and enzymatic response of poplar to cadmium stress. J Proteome 72:379–396

    Article  CAS  Google Scholar 

  • Kusznierewicz B, Baczek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namiesnik J, Konieczka P (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31:2482–2489

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–U354

    Article  CAS  Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  CAS  Google Scholar 

  • Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RC, Beekwilder J (2013) Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J Agric Food Chem 61:3984–3993

    Article  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  Google Scholar 

  • Li X, Yang YQ, Sun XD, Lin HM, Chen JH, Ren J, Hu XY, Yang YP (2014) Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS One 9:e107605

    Article  CAS  Google Scholar 

  • Li X, Zhang XM, Yang Y, Li BQ, Wu YS, Sun H, Yang YP (2016a) Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7:1862

  • Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM (2016b) Research progress on plant heat shock protein. Biotechnol Bull 32:7–13

    Google Scholar 

  • Li X, Zhang XM, Li BQ, Wu YS, Sun H, Yang YP (2017) Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants. Environ Sci Pollut Res 24:21660–21670

    Article  CAS  Google Scholar 

  • Li X, Wu YS, Li BQ, He WQ, Yang YH, Yang YP (2018a) Genome-wide identification and expression analysis of the cation diffusion facilitator gene family in turnip under diverse metal ion stresses. Front Genet 9:103

  • Li X, Zhang XM, Wu YS, Li BQ, Yang YP (2018b) Physiological and biochemical analysis of mechanisms underlying cadmium tolerance and accumulation in turnip. Plant Divers 40:19–27

    Article  Google Scholar 

  • Liang TS, Ding H, Wang GD, Kang JQ, Pang HX, Lv JY (2016) Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol Environ Saf 124:129–137

    Article  CAS  Google Scholar 

  • Lin CM, Chen CT, Lee HH, Lin JK (2002) Prevention of cellular ROS damage by isovitexin and related flavonoids. Planta Med 68:365–367

    Article  CAS  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    Article  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  Google Scholar 

  • Liu C, Chen G, Li Y, Peng Y, Zhang A, Hong K, Jiang H, Ruan B, Zhang B, Yang S, Gao Z, Qian Q (2017a) Characterization of a major QTL for manganese accumulation in rice grain. Sci Rep 7:17704

    Article  CAS  Google Scholar 

  • Liu H, Zhao HX, Wu LH, Liu AN, Zhao FJ, Xu WH (2017b) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    Article  CAS  Google Scholar 

  • Lou LL, Kang JQ, Pang HX, Li QY, Du XP, Wu W, Chen JX, Lv JY (2017) Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci18:1628

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  CAS  Google Scholar 

  • Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9:645

    Article  CAS  Google Scholar 

  • Mandal K, Bader SL, Kumar P, Malakar D, Campbell DS, Pradhan BS, Sarkar RK, Wadhwa N, Sensharma S, Jain V, Moritz RL, Majumdar SS (2017) An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation. DNA Res 24:143–157

    CAS  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  CAS  Google Scholar 

  • Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S (2015a) Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66:1001–1015

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A, Kosieradzka A, Posyniak E, Maciaszczyk-Dziubinska E, Biskup R, Garbiec A, Marchewka T (2015b) Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. Plant J 84:1045–1058

    Article  CAS  Google Scholar 

  • Mok L, Wynne JW, Tachedjian M, Shiell B, Ford K, Matthews DA, Bacic A, Michalski WP (2017) Proteomics informed by transcriptomics for characterising differential cellular susceptibility to Nelson Bay orthoreovirus infection. BMC Genomics:18

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591

    Article  CAS  Google Scholar 

  • Moreno-Caselles J, Moral R, Perez-Espinosa A, Perez-Murcia MD (2000) Cadmium accumulation and distribution in cucumber plant. J Plant Nutr 23:243–250

    Article  CAS  Google Scholar 

  • Morikawa CK (2017) Reducing cadmium accumulation in fresh pepper fruits by grafting. Hortic J 86:45–51

    Article  CAS  Google Scholar 

  • Pagel O, Loroch S, Sickmann A, Zahedi RP (2015) Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 12:235–253

    Article  CAS  Google Scholar 

  • Pejin B, Kien-Thai Y, Stanimirovic B, Vuckovic G, Belic D, Sabovljevic M (2012) Heavy metal content of a medicinal moss tea for hypertension. Nat Prod Res 26:2239–2242

    Article  CAS  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  CAS  Google Scholar 

  • Qi JF, Sun GL, Wang L, Zhao CX, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu ZD, Xu GW, Lu X, Wu JQ (2016) Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. Plant Cell Environ 39:1749–1766

    Article  CAS  Google Scholar 

  • Qiao K, Gong L, Tian YB, Wang H, Chai TY (2018) The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep 37:1343–1352

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Ruan BJ, Dai P, Wang W, Sun JB, Zhang WT, Yan Z, Yang JH (2014) Progress on post-translational modification of proteins. Chin J Cell Biol 36:1027–1037

    CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    Article  CAS  Google Scholar 

  • Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175

    Article  CAS  Google Scholar 

  • Sinclair SA, Senger T, Talke IN, Cobbett CS, Haydon MJ, Kramer U (2018) Systemic upregulation of MTP2- and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. Plant Cell 30:2463–2479

    Article  CAS  Google Scholar 

  • Sinclair SA, Gille S, Pauly M, Kramer U (2019) Regulation of acetylation of plant cell wall components is complex and responds to external stimuli. Plant Signal Behav 15:1687185

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and lonomics. Front Plant Sci 6:1143

    Article  Google Scholar 

  • Sun XM, Zhang JX, Zhang HJ, Zhang Q, Ni YW, Chen JP, Guan YF (2009) Glucosinolate profiles of Arabidopsis thaliana in response to cadmium exposure. Water Air Soil Pollut 200:109–117

    Article  CAS  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Wang JJ, Hou QQ, Li PH, Yang L, Sun XC, Benedito VA, Wen JQ, Chen BB, Mysore KS, Zhao J (2017) Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. Plant J 90:79–95

    Article  CAS  Google Scholar 

  • Wen B, Zhou R, Feng Q, Wang QH, Wang J, Liu SQ (2014) IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14:2280–2285

    Article  CAS  Google Scholar 

  • Wu YS, Li X, Yang YP, Yang YH (2018) Cloning and expression of BrrHMA2.1 and BrrHMA2.2 genes in turnip. Acta Botan Boreali-Occiden Sin 38:792–799

    Google Scholar 

  • Xu J, Chai TY, Zhang YX, Lang ML, Han L (2009) The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep 28:1235–1242

    Article  CAS  Google Scholar 

  • Xu L, Wang Y, Liu W, Wang J, Zhu XW, Zhang KY, Yu RG, Wang RH, Xie Y, Zhang W, Gong YQ, Liu LW (2015) De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci 236:313–323

    Article  CAS  Google Scholar 

  • Yamaji N, Xia JX, Mitani-Ueno N, Yokosho K, Ma JF (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939

    Article  CAS  Google Scholar 

  • Yang Y, Dong C, Li X, Du J, Qian M, Sun X, Yang Y (2016) A novel Ap2/ERF transcription factor from Stipa purpurea leads to enhanced drought tolerance in Arabidopsis thaliana. Plant Cell Rep 35:2227–2239

    Article  CAS  Google Scholar 

  • Yao HM, Du TT, Su DC (2006) Cadmium uptake and accumulation in vegetable species in Brassica Cruciferae. Chin Agric Sci Bull 22:291–294

    Google Scholar 

  • Yin X, Wang QL, Chen Q, Xiang L, Yang YQ, Yang YP (2017) Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa). Front Plant Sci 8:1191

    Article  Google Scholar 

  • Yu R, Li D, Du X, Xia S, Liu C, Shi G (2017) Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 18:587

    Article  CAS  Google Scholar 

  • Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E (2015) Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res Int 22:10679–10689

    Article  CAS  Google Scholar 

  • Zhang BJ, Zhang XX, Luo LG (2013) The major gene families related to cadmium absorption and transportation in plants. Genomics Appl Biol 32:127–134

    Google Scholar 

  • Zhang YF, Crofton EJ, Fan XZ, Li DG, Kong FP, Sinha M, Luxon BA, Spratt HM, Lichti CF, Green TA (2016) Convergent transcriptomics and proteomics of environmental enrichment and cocaine identifies novel therapeutic strategies for addiction. Neuroscience 339:254–266

    Article  CAS  Google Scholar 

  • Zhang AQ, Han DM, Wang Y, Mu HF, Zhang T, Yan XF, Pang QY (2018) Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. Planta 247:715–732

    Article  CAS  Google Scholar 

  • Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang YH, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  CAS  Google Scholar 

  • Zhao HX, Wang LS, Zhao FJ, Wu LH, Liu AN, Xu WZ (2019) SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. Plant Cell Environ 42:1112–1124

    Article  CAS  Google Scholar 

  • Zhou GF, Delhaize E, Zhou MX, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot London 112:603–612

    Article  CAS  Google Scholar 

  • Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, Guo JH, Yuan JG, Yang ZY (2016) Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ Sci Technol 50:6485–6494

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC) (31800226), the Western Youth Project B of the “Light of West China” Programme of Chinese Academy of Sciences (Y7260411W1), the Yunnan Applied Basic Research Projects (2018FB068) and the Youth Innovation Promotion Association CAS (2020387).

Author information

Authors and Affiliations

Authors

Contributions

XL and YPY conceived and designed the experiments. XL, DC, BQL and YY performed the experiments. XL and DC analyzed the data. XL wrote the manuscript. YPY revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiong Li or Yongping Yang.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 564 kb)

ESM 2

(XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, D., Li, B. et al. Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves. Environ Sci Pollut Res 28, 22458–22473 (2021). https://doi.org/10.1007/s11356-020-11454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11454-z

Keywords

Navigation