Abstract
Mercury and selenium concentrations and Se:Hg molar ratio in edible muscle and hepatopancreas of the crab Callinectes arcuatus from coastal lagoons of northwest Mexico were determined using atomic absorption spectrophotometry. The three coastal lagoons were Santa María La Reforma (SMLR), Urías (UR), and Huizache-Caimanero (HC); samplings were carried out from December 2016 to October 2017. The mercury ranges in the muscle of C. arcuatus in SMLR, UR, and HC lagoons were 0.31–0.52, 0.15–0.45, and 0.22–0.55 μg g−1, respectively. In hepatopancreas, the values ranged from 0.08 to 0.15, 0.06 to 0.15, and 0.05 to 0.12 μg g−1 in SMLR, UR, and HC lagoons, in that order. For selenium concentrations in C. arcuatus muscle, the ranges 11.64–20.14, 14.88–19.71, and 15.27–29.51 μg g−1 were determined in SMLR, UR, and HC lagoons, respectively. While for hepatopancreas, the ranges were 34.34–44.13, 27.77–40.45, and 15.16–49.80 μg g−1, in that order. No significant relationships (p > 0.05) between mercury and selenium concentrations (in white meat and hepatopancreas) were observed in C. arcuatus carapace width and length. Se:Hg molar ratio values were 98.1 ± 20.8, 171.4 ± 81.6, and 176.8 ± 51.2 for SMLR, UR, and HC lagoons, in that order. This high ratio (> 1) in C. arcuatus edible muscle indicated that selenium concentration was sufficient to neutralize possible mercury toxicity, so it does not represent danger to humans when it is consumed.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable
References
Adams DH, Engel ME (2014) Mercury, lead and cadmium in the blue crabs, Callinectes sapidus from the Atlantic coast of Florida: a multipredator approach. Ecotoxicol Environ Saf 102:196–201. https://doi.org/10.1016/j.ecoenv.2013.11.029
Álvaro NV, Neto AI, Couto RP, Azevedo JMN, Rodrigues AS (2016) Crabs tell the difference-relating trace metal content with land use and landscape attributes. Chemosphere 144:1377–1383. https://doi.org/10.1016/j.chemosphere.2015.10.022
Arcagni M, Rizzo A, Juncos R, Pavlin M, Campbell LM, Arribére MA, Horvat M, Guevara SR (2017) Mercury and selenium in the food web of lake Nahuel Huapi, Patagonia, Argentina. Chemosphere 166:163–173. https://doi.org/10.1016/j.chemosphere.2016.09.085
Azevedo JS, Braga ES, Favaro DT, Perretti AR, Rezende CE, Souza CMM (2011) Total mercury in sediments and in Brazilian Ariidae catfish from two estuaries under different anthropogenic influences. Mar Pollut Bull 62:2724–2731. https://doi.org/10.1016/j.marpolbul.2011.09.015
Bjerregaard P, Christensen A (2012) Selenium reduces the retention of methyl mercury in the brown shrimp Crangon crangon. Environ Sci Technol 46:6324–6329. https://doi.org/10.1021/es300549y
Buchanan S, Anglen J, Turyk M (2015) Methyl mercury exposure in populations at risk: analysis of NHANES 2011-2012. Environ Res 140:56–64. https://doi.org/10.1016/j.envres.2015.03.005
Burger J, Gochfeld M (2013) Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication. Food Chem Toxicol 57:235–245. https://doi.org/10.1016/j.fct.2013.03.021
CANAIVE (2012) ¿Cuánto mide México? National Wearing Industry Agency, Mexico. https://www.informador.mx/Economia/La-industria-del-vestido-genera-el-prototipo-del-mexicano-20120731-0248.html Accessed 27 Apr 2020
Conover WJ (2012) The rank transformation- an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistic courses. WIREs Comput Stat 4:432–438. https://doi.org/10.1002/wics.1216
de Almeida-Rodrigues PA, Ferrari RG, Hauser-Davis RA, dos Santos LN, Conte-Junior CA (2020) Seasonal influences on swimming crab mercury levels in an eutrophic estuary located in southeastern Brazil. Environ Sci Pollut Res 27:3473–3482. https://doi.org/10.1007/s11356-019-07052-3
Delgado-Alvarez CG, Frías-Espericueta MG, Ruelas-Inzunza J, Becerra-Álvarez MJ, Osuna-Martínez CC, Aguilar-Juárez M, Osuna-López JI, Escobar-Sánchez O, Voltolina D (2017) Total mercury in muscle and liver of Mugil spp from three coastal lagoons of NW Mexico: concentrations and risk assessment. Environ Monit Assess 189:312. https://doi.org/10.1007/s10661-017-6020-5
Di Lena G, Casini I, Caproni R, Orban E (2018) Total mercury levels in crustacean species from Italian fishery. Food Addit Contam 11:175–182. https://doi.org/10.1080/19393210.2018.1450302
Elahi M, Esmaili-Sari A, Bahramifar N (2012) Total mercury levels in selected tissues of some marine crustaceans from Persian Gulf: variations related to length, weight and sex. Bull Environ Contam Toxicol 88:60–64. https://doi.org/10.1007/s00128-011-0451-4
European Commission (2008) Commission regulation No 629/2008 of July 2. Amending regulations No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. http://data.europa.eu/eli/reg/2008/629/oj Accessed 28 Apr 2020
Frías-Espericueta MG, Ramos-Magaña BY, Ruelas-Inzunza J, Soto-Jiménez MF, Escobar-Sánchez O, Aguilar-Juárez M, Izaguirre-Fierro G, Osuna-Martínez CC, Voltolina D (2016a) Mercury and selenium concentrations in marine shrimps of NW Mexico: health risk assessment. Environ Monit Assess 188:269. https://doi.org/10.1007/s10661-016-5645-0
Frías-Espericueta MG, Vargas-Jiménez A, Ruelas-Inzunza J, Osuna-López JI, Aguilar-Juárez M, Bautista-Covarrubias JC, Voltolina D (2016b) Total mercury in Mugil spp and Eugerres axillaris of a subtropical lagoon of NW Mexico. Bull Environ Contam Toxicol 97:211–215. https://doi.org/10.1007/s00128-016-1811-x
Frías-Espericueta MG, Vargas-Jiménez A, Ruelas-Inzunza J, Osuna-López JI, Aguilar-Juárez M, Bautista-Covarrubias JC, Voltolina D (2018) Total mercury in the mangrove oyster Crassostrea corteziensis of a subtropical lagoon of NW Mexico. Turk J Fish Aquat Sci 18:853–858. https://doi.org/10.4194/1303-2712-v18_7_03
Gamboa-García DE, Duque G, Cogua P, Marrugo-Negrete JL (2020) Mercury dynamics in macroinvertebrates in relation to environmental factors in a highly impacted tropical estuary: Buenaventura bay, Colombian Pacific. Environ Sci Pollut Res 27:4044–4057. https://doi.org/10.1007/s11356-019-06970-6
Goldstein RM, Brigham ME, Stauffer JC (1996) Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Can J Fish Aquat Sci 53:244–252. https://doi.org/10.1139/f95-203
Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokohama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428. https://doi.org/10.1016/S0892-0362(97)00097-4
Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032
JECFA (2006) Evaluation of certain food additives and contaminants. Joint FAO/WHO Expert Committee on Food Additives. 4.3 Methylmercury. https://www.who.int/ipcs/publications/jecfa/reports/trs940.pdf Accessed 4 May 2020
Jose S, Jayesh P, Mohandas A, Philip R, Singh ISB (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177. https://doi.org/10.1016/j.marenvres.2010.12.008
Kakimoto S, Yoshimitsu M, Akutsu K, Kiyota K, Fujiwara T, Watanabe T, Kajimura K, Yamano T (2019) Concentrations of total mercury and methylmercury in red snow crabs (Chionoecetes japonicus) caught off the coast of Japan. Mar Pollut Bull 145:1–4. https://doi.org/10.1016/j.marpolbul.2019.04.062
Kehrig HA, Pinto FN, Moreira I, Malm O (2003) Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Org Geochem 34:661–669. https://doi.org/10.1016/S0146-6380(03)00021-4
Kehrig HA, Seixas TG, Di Beneditto AP, Malm O (2013) Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicol Environ Saf 93:156–162. https://doi.org/10.1016/j.ecoenv.2013.03.034
Kumar SB, Padhi RK, Satpathy KK (2019) Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Mar Pollut Bull 141:273–282. https://doi.org/10.1016/j.marpolbul.2019.02.022
Lemly AD (2004) Aquatic selenium pollution is a global environment safety issue. Ecotoxicol Envion Saf 59:44–56. https://doi.org/10.1016/S0147-6513(03)00095-2
Mirlean N, Ferraz AH, Seus-Arrache ER, Andrade CFF, Costa LP, Johannesson KH (2019) Mercury and selenium in the Brazilian subtropical marine products: food consumption and safety. J Food Compos Anal 84:103310. https://doi.org/10.1016/j.jfca.2019.103310
Morillo J, Usero J, Bakouri HE (2008) Biomonitoring of heavy metals in the coastal waters of two industrialized bays in southern Spain using the barnacle Balanus amphitrite. Chem Speciat Bioavailab 20:227–237. https://doi.org/10.3184/095422908X380992
Nöel L, Chafey C, Testu C, Pinte J, Velge P, Guerin T (2011) Contamination levels of lead, cadmium and mercury in imported and domestic lobsters and large crabs species consumed in France: differences between white and brown meat. J Food Compos Anal 24:368–375. https://doi.org/10.1016/j.jfca.2010.08.011
Osuna-Martínez CC, Páez-Osuna F, Alonso-Rodríguez R (2010) Mercury in cultured oysters (Crassostrea gigas Thunberg, 1793and C. corteziensis Hertlein, 1951) from four coastal lagoons of the SE Gulf of California, Mexico. Bull Environ Contam Toxicol 85:339–343. https://doi.org/10.1007/s00128-010-0071-4
Parelho C, Rodrigues AS, Cruz JV, Garcia P (2014) Linking trace metals and agricultural land use in volcanic soils - a multivariate approach. Sci Total Environ 496:241–247. https://doi.org/10.1016/j.scitotenv.2014.07.053
Pineda M, Madrid N (1993) Evaluación de la biología y dinámica poblacional de la jaiba Callinectes arcuatus Ordway en el Pacífico colombiano. Universidad del Valle
Polak-Juszczak L (2015) Selenium and mercury molar ratios in commercial fish from the Baltic Sea: additional risk assessment criterion for mercury exposure. Food Control 50:881–888. https://doi.org/10.1016/j.foodcont.2014.10.046
Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77:68–72. https://doi.org/10.1006/enrs.1998.3832
Rudd JWM, Bodaly RA, Fisher NS, Kelly CA, Kopec D, Whipple C (2018) Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot estuary sustains high mercury in biota. Sci Total Environ 642:1340–1352. https://doi.org/10.1016/j.scitotenv.2018.06.060
Santos AB, Silva WL (2017) New evaluation of selenium: mercury ratios in fish and crabs from an impacted tropical estuary, Southeastern Brazil. Int J Environ Sci Nat Res 2:90–92. https://doi.org/10.19080/IJESNR.2017.02.555588
Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T, Jenssen BM (2011) Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 45:6561–6566. https://doi.org/10.1021/es200478b
Taylor DL, Calabrese NM (2018) Mercury content of blue carbs (Callinectes sapidus) from southern New England coastal habits: contamination in an emerging fishery and risk to human consumers. Mar Pollut Bull 126:166–178. https://doi.org/10.1016/j.marpolbul.2017.10.089
Tillander M, Miettinen JK, Rissanen K, Miettinen V, Minkkinen E (1969) The excretion by fish, mussel, mollusk and crayfish of methyl mercury nitrate and phenyl mercury nitrate, introduce orally or injected into musculature. Nord Hyg Tidskr 50:181–183
Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Seppänen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25:228–233. https://doi.org/10.1161/01.ATV.0000150040.20950.61
WHO (1987) Selenium. Environmental health criteria 58. Geneva. https://www.who.int/ipcs/publications/ehc/ehc_numerical/en/ Accessed 4 Aug 2020
WHO (1990) Environmental health criteria 101: methylmercury. Geneva. https://apps.who.int/iris/bitstream/handle/10665 Accessed 4 May 2020
Xu Z, Regenstein JM, Xie D, Lu W, Ren X, Yuan J (2018) The oxidative stress and antioxidant response of Litopenaeus vannamei to low temperature and air exposure. Fish Shellfish Immunol 72:564–571. https://doi.org/10.1016/j.fsi.2017.11.016
Acknowledgments
The authors thank Domenico Voltolina, Karla Sánchez, and Humberto Bojórquez-Leyva for the technical support and D. Fischer for the editorial services.
Funding
This study was supported by the projects Programa de Fomento y Apoyo a Proyectos de Investigación UAS 2015/103, Programa para el Desarrollo Profesional Docente CANE (year 3), and Consejo Nacional de Ciencia y Tecnología INFRA 2012-01-188029.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analyses were performed by Pedro Octavio Ocampo-Rodríguez, Karen Lizbeth Soto-Romero, Nancy Lorena Garzón-Raygoza Marisela Aguilar-Júarez, José Isidro Osuna-López, and Martín Frías-Espericueta. The first draft of the manuscript was written by Carolina Guadalupe Delgado-Alvarez, Jorge Ruelas-Inzunza, Carmen Cristina Osuna-Martínez, Magdalena Elizabeth Bergés-Tiznado, Ofelia Escobar-Sánchez, and Martín Frías-Espericueta; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethics approval and consent to participate
Not applicable
Consent for publication
Not applicable
Additional information
Responsible Editor: Vedula VSS Sarma
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Delgado-Alvarez, C.G., Ruelas-Inzunza, J., Osuna-Martínez, C.C. et al. Mercury and selenium concentrations in the crab Callinectes arcuatus from three coastal lagoons of NW Mexico. Environ Sci Pollut Res 28, 10909–10917 (2021). https://doi.org/10.1007/s11356-020-11396-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-020-11396-6


