Skip to main content

Advertisement

Log in

Renewable energy hybrid subsidy combining input and output subsidies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With respect to sustainable development, how to promote renewable energy is a major issue. Here, we introduce a hybrid subsidy mechanism that considers both input and output subsidies. Hybrid subsidies are analyzed with stochastic optimization approaches. An outstanding advantage of hybrid subsidies is the flexibility to adjust the intensity between the input and output subsidies. Our study shows that input-biased subsidies advance outputs and improve environmental efficiency (EE), while output-biased subsidies reduce risk and boost producer subsidy equivalents (PSEs). Therefore, the policy implication of this research is that different subsidy intensities should be employed according to preferences or social requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Availability of data and materials was not suitable for this research.

References

  • Acharya RH, Sadath AC (2017) Implications of energy subsidy reform in India. Energy Policy 102:453–462

    Article  Google Scholar 

  • Adib, R., Murdock, H. E., Appavou, F., Brown, A., Epp, B., Leidreiter, A., … & Farrell, T. C. (2016). Renewables 2016 Global Status Report. Global Status Report Renewable Energy Policy Network for the 21st Century (REN21).

  • Allcott H, Knittel C, Taubinsky D (2015) Tagging and targeting of energy efficiency subsidies. Am Econ Rev 105(5):187–191

    Article  Google Scholar 

  • BMU, (2011). Entwurf: Erfahrungsbericht 2011 zum Erneuerbare-Energien-Gesetz (EEG-Erfahrungsbericht). Bundesministerium fur Umwelt, Naturschutz, und Reaktorsicherheit (BMU), Berlin, Germany.

  • Böhringer C, Cuntz A, Harhoff D, Asane-Otoo E (2017) The impact of the German feed-in tariff scheme on innovation: evidence based on patent filings in renewable energy technologies. Energy Econ 67:545–553

    Article  Google Scholar 

  • Chang KC, Lin WM, Lee TS, Chung KM (2011) Subsidy programs on diffusion of solar water heaters: Taiwan’s experience. Energy Policy 39(2):563–567

    Article  Google Scholar 

  • Chen ZY, Nie PY (2016) Effects of carbon tax on social welfare: a case study of China. Appl Energy 183:1607–1615

    Article  Google Scholar 

  • Chen YH, Wen XW, Wang B, Nie PY (2017a) Agricultural pollution and regulation: How to subsidize agriculture? J Clean Prod 164:258–264

    Article  Google Scholar 

  • Chen YH, Nie PY, Yang YC (2017b) Energy management contract with subsidy. J Renew Sustain Energy 9(5):055903

    Article  Google Scholar 

  • Cullen R (2017) Evaluating renewable energy policies. Aust J Agric Resour Econ 61(1):1–18

    Article  Google Scholar 

  • IEA (2018). Market Report Series: Renewables 2018. International Energy Agency, https://www.iea.org/renewables2018/.

  • Jarke J, Perino G (2017) Do renewable energy policies reduce carbon emissions? On caps and inter-industry leakage. J Environ Econ Manag 84:102–124

    Article  Google Scholar 

  • Liefert WM, Sedik DJ, Koopman RB, Serova E, Melyukhina O (1996) Producer subsidy equivalents for Russian agriculture: estimation and interpretation. Am J Agric Econ 78(3):792–798

    Article  Google Scholar 

  • Lopez RA, He X, De Falcis E (2017) What drives China’s new agricultural subsidies? World Dev 93:279–292

    Article  Google Scholar 

  • Martin NJ, Rice JL (2017) Examining the use of concept analysis and mapping software for renewable energy feed-in tariff design. Renew Energy 113:211–220

    Article  Google Scholar 

  • Nie PY (2015) Analysis of conventional energy supply resource diversity. Appl Therm Eng 89:663–668

    Article  Google Scholar 

  • Nie PY, Chen YH (2016) Duopoly price discrimination with monopolization energy input. Energy Sources Part B 11(6):526–533

    Article  Google Scholar 

  • Nie PY, Wang C (2019) An analysis of cost-reduction innovation under capacity constrained inputs. Appl Econ 51(6):564–576

    Article  Google Scholar 

  • Nie PY, Yang YC (2016) Renewable energy strategies and energy security. J Renew Sustain Energy 8(6):065903

    Article  Google Scholar 

  • Nie PY, Yang YC, Chen YH, Wang ZH (2016) How to subsidize energy efficiency under duopoly efficiently? Appl Energy 175:31–39

    Article  Google Scholar 

  • Nie PY, Wang C, Yang YC (2017) Comparison of energy efficiency subsidies under market power. Energy Policy 110:144–149

    Article  Google Scholar 

  • Nie PY, Wang C, Chen ZY, Chen YH (2018a) A theoretic analysis of key person insurance. Econ Model 71:272–278

    Article  Google Scholar 

  • Nie PY, Wang C, Chen YH, Yang YC (2018b) Effects of switching costs on innovative investment. Technol Econ Dev Econ 24(3):933–949

    Article  Google Scholar 

  • Nie PY, Wang C, Chen YH (2018c) Top runner program in China: a theoretical analysis for potential subsidies. Energy Strat Rev 21:157–162

    Article  Google Scholar 

  • Shen J, Luo C (2015) Overall review of renewable energy subsidy policies in China–contradictions of intentions and effects. Renew Sust Energ Rev 41:1478–1488

    Article  Google Scholar 

  • Steenblik RP, Coroyannakis P (1995) Reform of coal policies in Western and Central Europe: Implications for the environment. Energy Policy 23(6):537–553

    Article  Google Scholar 

  • Sun P, Nie PY (2015) A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry. Renew Energy 74:255–262

    Article  Google Scholar 

  • Upton GB Jr, Snyder BF (2017) Funding renewable energy: an analysis of renewable portfolio standards. Energy Econ 66:205–216

    Article  Google Scholar 

  • Wang C, Nie PY, Peng DH, Li ZH (2017) Green insurance subsidy for promoting clean production innovation. J Clean Prod 148:111–117

    Article  Google Scholar 

  • Yang YC, Nie PY (2015) R&D subsidies under asymmetric Cournot competition. Econ Res-Ekonomska istraživanja 28(1):830–842

    Article  CAS  Google Scholar 

  • Yang DX, Nie PY (2016) Influence of optimal government subsidies for renewable energy enterprises. IET Renew Power Gener 10(9):1413–1421

    Article  Google Scholar 

  • Yang DX, Chen ZY, Nie PY (2016) Output subsidy of renewable energy power industry under asymmetric information. Energy 117:291–299

    Article  Google Scholar 

  • Yang YC, Nie PY, Liu HT, Shen MH (2018) On the welfare effects of subsidy game for renewable energy investment: toward a dynamic equilibrium model. Renew Energy 121:420–428

    Article  Google Scholar 

  • Yang D, Jiang M, Chen Z, Nie P (2019) Analysis on one-off subsidy for renewable energy projects based on time value of money. J Renew Sustain Energy 11(2):025901

    Article  Google Scholar 

  • Zhang MM, Zhou DQ, Zhou P, Chen HT (2017) Optimal design of subsidy to stimulate renewable energy investments: the case of China. Renew Sust Energ Rev 71:873–888

    Article  Google Scholar 

Download references

Funding

This work is partially supported by the Guangdong Social Science Foundation (GD20YYJ01, GD18JRZ05, GD17XYJ23), the National Natural Science Foundation of the People’s Republic of China (71771057), the Innovative Foundation (Humanities and Social Sciences) for Higher Education of Guangdong Province (2017 WQNCX053), the Guangdong Natural Science Foundation (2018A030310669), and the Project of Humanities and Social Sciences of the Ministry of Education of China (18YJC790156). All authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

Xu Xiao conceived the idea. Zi-rui Chen, Xu Xiao, and Pu-yan Nie design the model. Zi-rui Chen and Xu Xiao did mathematical studies and wrote manuscript. Zi-rui Chen critically screened the manuscript. Pu-yan Nie supervised the project. All authors approved the manuscript before submission to the journal.

Corresponding authors

Correspondence to Zi-rui Chen or Xu Xiao.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest

Ethical approval

Ethics approval was not suitable for this research.

Consent to participate

Consent to Participate was not suitable for this research.

Consent to publish

The authors agree to publication in this journal. The authors confirm:

That the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis);

That it is not under consideration for publication elsewhere;

That its publication has been approved by all co-authors;

That its publication has been approved (tacitly or explicitly) by the responsible authorities at the institution where the work is carried out.

Additional information

Responsible Editor: Nicholas Apergis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

By (10) and the budgeting constraints, we have

$$ {s}_O{\int}_{-\frac{1}{2}}^{\frac{1}{2}}\left(1+\eta \right){\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}f\left(\eta \right) d\eta +{s}_I{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{1}{\alpha -1}}f\left(\eta \right) d\eta =B. $$
(16)

For convenience, we denote

$$ {\displaystyle \begin{array}{c}F\left({s}_O,{s}_I\right)=\\ {}{s}_O{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}{\left[\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}f\left(\eta \right) d\eta +{s}_I{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}{\left[\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}\right]}^{\frac{1}{\alpha -1}}f\left(\eta \right) d\eta -B=0.\end{array}} $$
(17)
$$ {\displaystyle \begin{array}{c}\frac{\partial F\left({s}_O,{s}_I\right)}{\partial {s}_O}={\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \left\{\right[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\\ {}+\frac{\alpha {s}_O}{\left(1-\alpha \right)\left(1+{s}_O\right)}\Big[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\\ {}+\frac{s_I}{\left(1-\alpha \right)\left(1+{s}_O\right)}\left[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\right\}>0,\end{array}} $$
(18)
$$ {\displaystyle \begin{array}{c}\frac{\partial F\left({s}_O,{s}_I\right)}{\partial {s}_I}={\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \left\{\right[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\\ {}+\frac{s_I}{\left(1-\alpha \right)\left(\tau -{s}_I\right)}\Big[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\\ {}+\frac{\alpha {s}_O}{\left(1-\alpha \right)\left(\tau -{s}_I\right)}\left[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\right\}>0.\end{array}} $$
(19)

According to the implicit function theorem, we have the following relationship:

$$ \frac{\partial {s}_O}{\partial {s}_I}=-\frac{\frac{\partial F\left({s}_O,{s}_I\right)}{\partial {s}_I}}{\frac{\partial F\left({s}_O,{s}_I\right)}{\partial {s}_O}}<0 $$
(20)

On the other hand, by virtue of (8), we have

$$ {\displaystyle \begin{array}{c}\frac{\partial Exp\left({q}^{\ast}\right)}{\partial {s}_I}=\frac{\alpha }{\left(1-\alpha \right)}{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \left\{\frac{1}{\left(\tau -{s}_I\right)}\right[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_o\right)}}\\ {}+\frac{\partial {s}_o}{\partial {s}_I}\frac{1}{\left(1+{s}_o\right)}\left[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_o\right)}}\right\}\\ {}\frac{\alpha {\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta}{\left(1-\alpha \right)\frac{\partial F}{\partial {s}_o}}\left\{\frac{\partial F}{\partial {s}_o}\frac{1}{\left(\tau -{s}_I\right)}\right[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_o\right)}}\\ {}-\frac{\partial F}{\partial {s}_I}\frac{1}{\left(1+{s}_o\right)}\left[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_o\right)}}\right\}\\ {}=\frac{\alpha {\left[{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \right]}^2}{\left(1-\alpha \right)\frac{\partial F}{\partial {s}_O}}\left\{\frac{1}{\left(\tau -{s}_I\right)}\right[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\\ {}-\frac{1}{\left(1+{s}_O\right)}\left[{}^{\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}}\right\}\\ {}=\frac{\alpha {\left[{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \right]}^2}{\left(1-\alpha \right)\frac{\partial F}{\partial {s}_O}}\left({}^{\tau}\right({}^1\left({\alpha}^{\frac{2\alpha }{1-\alpha }}-{\alpha}^{\frac{\alpha +1}{1-\alpha }}\right)>0.\end{array}} $$
(21)

The last inequality holds because 0 < α < 1 yields the relationship \( {\alpha}^{\frac{2\alpha }{1-\alpha }}>{\alpha}^{\frac{\alpha +1}{1-\alpha }} \). Therefore, higher input subsidy intensity manifests more outputs.

By , \( \frac{\partial Exp\left({q}^{\ast}\right)}{\partial {s}_I}=\frac{a}{\left(1-a\right)}{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-a}}f\left(\eta \right) d\eta \left\{\frac{1}{\tau -{s}_I}{\left[\frac{\tau -{s}_I}{a\left(1+{s}_O\right)}\right]}^{\frac{a}{a-1}}+\frac{{\partial s}_O}{{\partial s}_I}\frac{1}{\left(1+{s}_O\right)}{\left[\frac{\tau -{s}_I}{a\left(1+{s}_O\right)}\right]}^{\frac{a}{a-1}}\right\} \)

the term \( \frac{\alpha }{\left(1-\alpha \right)}{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \frac{1}{\left(\tau -{s}_I\right)}{\left[\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}} \) is the direct increasing effect of the input subsidies and the other term \( \frac{\partial {s}_O}{\partial {s}_I}\frac{\alpha }{\left(1-\alpha \right)}{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left(1+\eta \right)}^{\frac{1}{1-\alpha }}f\left(\eta \right) d\eta \frac{1}{\left(1+{s}_O\right)}{\left[\frac{\tau -{s}_I}{\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}\Big\} \) is the indirect decreasing impact of the input subsidies. The effects of input subsidy intensity are jointly determined by the direct impact and indirect effect. In the above formulation, the direct increasing effects are larger than the indirect decreasing effects. Thus, the total effects of input subsidy intensity on outputs are positive. Further, by (9), along with the relationship between input subsidy intensity and the expected outputs, we immediately have the conclusion that higher input subsidy intensity manifests in higher profits.

Therefore, conclusions are achieved, and the proof is complete. ■

Proof of Proposition 2

By (11), the lowest risk subsidy aims to solve the following problem:

$$ {\displaystyle \begin{array}{c}\underset{s_O,{s}_I}{\mathit{\operatorname{Min}}}{s}_O{\int}_{-\frac{1}{2}}^{\frac{1}{2}}\left(1+\eta \right){\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}f\left(\eta \right) d\eta +{s}_I{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{1}{\alpha -1}}f\left(\eta \right) d\eta =B\\ {}s.t.{s}_O{\int}_{-\frac{1}{2}}^{\frac{1}{2}}\left(1+\eta \right){\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}f\left(\eta \right) d\eta +{s}_I{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{1}{\alpha -1}}f\left(\eta \right) d\eta =B\kern0.5em .\end{array}} $$
(22)

The above constraints are the budget constraints. The above problem is equivalent to the following problem:

$$ {\displaystyle \begin{array}{c}\underset{s_O,{s}_I}{\mathit{\operatorname{Min}}}\kern0.5em {\left[\frac{\alpha \left(1+{s}_O\right)}{\left(\tau -{s}_I\right)}\right]}^{\frac{2\alpha }{1-\alpha }}\\ {}s.t.\begin{array}{cc}\begin{array}{c}{s}_O{\int}_{-\frac{1}{2}}^{\frac{1}{2}}\left(1+\eta \right){\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{\alpha }{\alpha -1}}f\left(\eta \right) d\eta \\ {}+{s}_I{\int}_{-\frac{1}{2}}^{\frac{1}{2}}{\left[\frac{\tau -{s}_I}{\left(1+\eta \right)\alpha \left(1+{s}_O\right)}\right]}^{\frac{1}{\alpha -1}}f\left(\eta \right) d\eta =B.\end{array}& \end{array}\end{array}} $$
(23)

Based on the analysis of Proposition 1, under budget subsidy constraints, the above object function also increases with input subsidies but decreases with the output subsidy intensity.

Therefore, the output risks of hybrid subsidies reach minimization under the output subsidy. Conclusions are thus achieved, and the proof is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zr., Xiao, X. & Nie, Py. Renewable energy hybrid subsidy combining input and output subsidies. Environ Sci Pollut Res 28, 9157–9164 (2021). https://doi.org/10.1007/s11356-020-11369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11369-9

Keywords

Navigation