Skip to main content
Log in

Silver nanoparticles induce histopathological alterations in juvenile Penaeus vannamei

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the histopathological alterations in juvenile Penaeus vannamei caused by silver nanoparticles (AgNPs) for two types of experiments: at sublethal concentrations of 3.6 to 7.1 μg/μL of metallic silver (Ag) for a short period up to 72 h and for 2.6 to 7.9 μg of Ag/μL for the long period up to 264 h. The severity degree of the changes was evaluated and the histopathological index (Hi) was determined in both experiments using the necrosis (cellular dead) as an indicator. The pathological changes in the striated muscle, gills, antennal gland, circulatory system, heart, lymphoid organ, and connective tissue are described. The histopathological effects were similar for the two experiments without a direct relationship with the concentrations. In the short-term experiment, the values of Hi were higher (2.34 ± 0.41 at 48 hpi and 1.91 ± 0.39 at 72 hpi) compared with the long-term experiment (values between 0.57 ± 0.36 to 1.74 ± 0.57 at 264 hpi). The observed pathologies are similar to those caused by other metals, with the exception of the agglomerations of black particles in the gills, lymphoid organ, and muscle, which has not been previously reported. This work shows that silver nanoparticles cause damage to shrimp in sublethal concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Acedo-Valdez MR, Grijalva-Chon JM, Larios-Rodríguez E, Maldonado-Arce AD, Mendoza-Cano F, Sánchez-Paz JA, Castro-Longoria R (2017) Antibacterial effect of biosynthesized silver nanoparticles in Pacific white shrimp Litopenaeus vannamei (Boone) infected with necrotizing hepatopancreatitis bacterium (NHP-B) Lat. Am J Aquat Res 45(2):421–430. https://doi.org/10.3856/vol45-issue2-fulltext-17

    Article  Google Scholar 

  • Akter M, Sikder MDT, Rahman MDM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) Review. A systematic review of silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Advan Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  Google Scholar 

  • Ashley P (2007) Fish welfare: current issues in aquaculture. Appl. Animal Behave Sci 104:199.235. https://doi.org/10.1016/J.applanim.206.09.001

  • Bahabadi MN, Delavar FH, Mirbakhsh M, Niknam K, Johari SA (2017) Assessment of antibacterial activity of two different sizes of colloidal silver nanoparticle (AgNPs) against Vibrio harveyi isolated from shrimp Litopenaeus vannamei. Aquac Int 25:463–472. https://doi.org/10.1007/s10499-016-0043-8

    Article  CAS  Google Scholar 

  • Bambang Y, Thuet P, Charmantier-Daures M, Trilles JP, Charmantier G (1995) Effect of copper on survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus. Aquat Toxicol 33:125–139. https://doi.org/10.1016/0166-445X(95)00011

    Article  CAS  Google Scholar 

  • Banerjee S, Kumar V, Pathak AN (2014) Drug effects on aquaculture and it’s remediation. JDDT 4(1):117–122. https://doi.org/10.22270/jddt.v4i1.750

    Article  Google Scholar 

  • Banumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci 28:2027–2040. https://doi.org/10.1007/s10876-017-1201-5

    Article  CAS  Google Scholar 

  • Battistella S, Bonivento P, Amirante GA (1996) Hemocytes and immunological reactions in crustaceans. Ital J Zool 63(4):337–343. https://doi.org/10.1080/11250009609356156

    Article  Google Scholar 

  • Bell TA, Lighter DV (1988) A handbook of normal penaeid shrimp histology. Allen Press, Lawrence, p 114

    Google Scholar 

  • Bianchini A, Playle EC, Wood CM, Walsh OJ (2007) Short-term silver accumulation in tissues of three marine invertebrates: shrimp Penaeus duorarum, sea hare Aplysia californica, and sea urchin Diadema antillarum. Aquat Toxicol 84:182–189. https://doi.org/10.1016/j.aquatox.2007.02.021

    Article  CAS  Google Scholar 

  • Bogdanchikova N, Vázquez-Muñoz R, Huerta-Saquero A, Pena-Jasso A, Aguilar-Uzcanga G, Picos-Díaz PL, Pestryakov A, Burmistrov V, Martynyuk O, Luna-Vázquez-Gómez R, Almanza H (2016) Silver nanoparticles composition for treatment of distemper in dogs. Int J Nanotechnol 13(1–3):227–237. https://doi.org/10.1504/IJNT.2016.074536

    Article  CAS  Google Scholar 

  • Borrego B, Lorenzo G, Mota-Morales J, Almanza-Reyes H, Mateos F, López-Gil E, de la Losa N, Burmistrov VA, Pestryakov AN, Brun A, Bogdanchikova N (2016) Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine. 12(5):1185–1192. https://doi.org/10.1016/j.nano.2016.01.021

    Article  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419. https://doi.org/10.1093/toxsci/kfi256

    Article  CAS  Google Scholar 

  • Brooking J, Davis SS, Illum L (2001) Transport of nanoparticles across the rat nasal mucosa. J Drug Target 9:267–279. https://doi.org/10.3109/10611860108997935

    Article  CAS  Google Scholar 

  • Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ 565:933–940. https://doi.org/10.1016/j.scitotenv.2016.01.085

    Article  CAS  Google Scholar 

  • Conover WJ (2012) The rank transformation-an easy and intuitive way to connect many nonparametric methods to their parametric counterparts for seamless teaching introductory statistics courses. Wires Comput Stat 4:432–438. https://doi.org/10.1002/wics.1216

    Article  Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–129. https://doi.org/10.2307/2683975

    Article  Google Scholar 

  • Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49. https://doi.org/10.1016/j.marenvres.2015.06.001

    Article  CAS  Google Scholar 

  • Gerhardt A, de Bisthoven LJ, Mo Z, Wang C, Yang M, Wang Z (2002) Short-term responses of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidae) to municipal and pharmaceutical waste water in Beijing, China: survival, behaviour, biochemical biomarker. Chemosphere 47:35–47. https://doi.org/10.1016/s0045-6535(01)00223-5

    Article  CAS  Google Scholar 

  • Gopi N, Vijayakumara S, Thayab R, Govindarajan M, Alharbie NS, Kadaikunnane S, Khalede MJ, Al-Anbre MN, Vaseeharana B (2019) Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J Trace Elements Med Biol 55:170–179. https://doi.org/10.1016/j.jtemb.2019.06.011

    Article  CAS  Google Scholar 

  • Henry RP, Lucu CE, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3(431):1–33. https://doi.org/10.3389/fphys.2012.00431

    Article  CAS  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  • Ishwarya R, Vaseeharan B, Shanthi S, Ramesh S, Manogari P, Dhanalakshmi K, Vijayakumar S, Benelli G (2016) Green synthesized silver nanoparticles: toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. J Clust Sci. https://doi.org/10.1007/s10876-016-1126-4

  • Juarez-Moreno K, Mejía-Ruiz CH, Díaz F, Reyna-Verdugo H, Red AD, Vazquez-Felix EF, Sánchez-Castrejón E, Mota-Morales JD, Pestryakovf A, Bogdanchikova N (2017) Effect of silver nanoparticles on metabolic rate, hematological response and survival of juvenile white shrimp Litopenaeus vannamei (Boone). Chemosphere 169:716–724. https://doi.org/10.1016/j.chemosphere.2016.11.054

    Article  CAS  Google Scholar 

  • Kachenton S, Whangpurikul V, Kangwanrangsan N, Tansatit T, Jiraungkoorskul W (2018) Silver nanoparticles toxicity in brine shrimp and its histopathological analysis. Int J Nanosci 1-5:1850007. https://doi.org/10.1142/S0219581X18500072

    Article  CAS  Google Scholar 

  • Kandasamy K, Alikunhi NM, Manickaswami G, Nabikhan A, Ayyavu G (2013) Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci 3:65–73. https://doi.org/10.1007/s13204-012-0064-1

    Article  CAS  Google Scholar 

  • Kondo M, Itami T, Takahashi Y, Fujii R, Tomonaga S (1994) Structure and function of the lymphoid organ in the kuruma prawn. Dev Comp Immunol 18(Suppl l):S109

    Google Scholar 

  • Lekamge S, Miranda AF, Abraham A, Li V, Shukla R, Bansal V, Nugegoda D (2018) The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies; Hydra vulgaris, daphnia carinata, and Paratya autraliensis. Front Environ Sci 6:162. https://doi.org/10.3389/fenvs.2018.00152

    Article  Google Scholar 

  • Li N, Zhao Y, Yang J (2007) Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda). Arch Environ Contam Toxicol 52:73–79. https://doi.org/10.1007/s00244-005-0214-5

    Article  CAS  Google Scholar 

  • Lightner DV (1996) A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. J. World Aquacult. Soc., Baton Rouge

  • Martin GG, Poole D, Poole C, Hose JE, Arias M, Reynolds L, McKrell N, Whang A (1993) Clearance of bacteria injected into the hemolymph of the penaeid shrimp, Sicyonia ingentis. J Invertebr Pathol 62(3):308–315. https://doi.org/10.1006/jipa.1993.1118

    Article  Google Scholar 

  • Martin GG, Hose JE, Minka G, Rosenberg S (1996) Clearance of bacteria injected into the hemolymph of the ridgeback prawn, Sicyonia ingentis (Crustacea: Decapoda): role of hematopoietic tissue. J Morphol 227:227–233. https://doi.org/10.1002/(SICI)1097-4687(199602)227:2<227:AID-JMOR8>3.0.CO;2-5

    Article  Google Scholar 

  • Martin GG, Quintero M, Quigley M, Khosrovian H (2000) Elimination of sequestered material from the gills of decapod crustaceans. J Crustac Biol 20:209–217. https://doi.org/10.1163/20021975-99990032

    Article  Google Scholar 

  • Nimmo DWR, Lightner DV, Bahner LH (1977) Effects of cadmium on shrimps Penaeus duodarum, Palaemonetes pugio and Palaemonetes vulgaris. In: Vernberg FJ, Calabresse A, Thurberg FP, Vernberg WB (eds) Physiological responses of marine biota to pollutants. Academic Press, New York, pp 131–184

    Chapter  Google Scholar 

  • Ochoa-Meza AR, Álvarez-Sánchez AR, Romo-Quiñonez CR, Barraza A, Magallón-Barajas FJ, Chávez-Sánchez A, García-Ramos JC, Toledano-Magaña Y, Bogdanchikova N, Pestryakov A, Mejía-Ruiz CH (2019) Silver nanoparticles enhance the survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish Shellfish Immonol 84:1083–1089. https://doi.org/10.1016/j.fsi.2018.10.007

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Kannaiyan P, Moturi M, Devadas T, Muthuramalingam J, Natarajan L, Arunachalam N, Ponniah AG (2013) Antibacterial activity of zinc oxide nanoparticles against Vibrio harveyi. Indian J Fish:107–112

  • Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya VL (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquac J. (2011): FAJ-16

  • Romo-Quiñonez CR, Álvarez-Sánchez AR, Álvarez-Ruiz P, Chávez-Sánchez MC, Bogdanchikova N, Pestryakov A, Mejia-Ruiz CH (2020) Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimp Litopenaeus vannamei against White Spot Syndrome Virus infection. PeerJ 8:e8446. https://doi.org/10.7717/peerj.8446

    Article  Google Scholar 

  • Rusaini, Owens L (2010) Insight into the lymphoid organ of penaeid prawns: a review. Fish Shellfish Immunol 29:367–377. https://doi.org/10.1016/j.fsi.2010.05.011

    Article  CAS  Google Scholar 

  • Sabu AS, Sanil NK, Nammalwar P (2017) Effect of cadmium in the gills of green tiger prawn, Penaeus semisulcatus. Int J Fish Aquac 5(1):467–478

    Google Scholar 

  • Selvaraj B, Subramanian K, Gopal S, Renuga PS (2014) Nanotechnology as a novel tool for aquaculture industry: a review. World J Pharma Sci 2(9):1089–1096

    Google Scholar 

  • Sibaja-Luis AI, Ramos-Campos EV, Luiz de Oliveira J, Fernandes-Fraceto L (2019) Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev Aquac 11:119–132. https://doi.org/10.1111/r.aq.12229

    Article  Google Scholar 

  • Sivaramasamy E, Zhiwei W, Li F, Xiang J (2016) Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. J Nanomed Nanotechnol 7:1–10. https://doi.org/10.4172/2157-7439.1000352

    Article  CAS  Google Scholar 

  • Soegianto A, Charmantier-Daures M, Trilles J, Charmantier G (1999) Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda). J Crustac Biol 19:209–223. https://doi.org/10.2307/1549227

    Article  Google Scholar 

  • Sonnenholzner S, Rodríguez J, Pérez F, Betancourt I, Echeverría F, Calderón J (2002) Supervivencia y respuesta inmune de camarones juveniles L. vannamei desafiador por vía oral a WSSV a diferentes temperaturas. El Mundo Acuícola 8:50–55

    Google Scholar 

  • Tsai JR, Lin HC (2014) Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3:409–417. https://doi.org/10.1242/bio.20147336

    Article  Google Scholar 

  • Untersteiner H, Gretschel G, Puchner T, Napetschnig S, Kaiser H (2005) Monitoring behavioral responses to the heavy metal cadmium in the marine shrimp Hippolyte inermis leach (Crustacea: Decapoda) with video imaging. Zool Stud 44(1):71–80

    CAS  Google Scholar 

  • Van de Braak CBT, Botterblom MHA, Taverne N, van Muiswinkel WB, Rombout JHWM, van der Knaap WPW (2002) The roles of the haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish Shellfish Immunol 13:293–309. https://doi.org/10.1006/fsim.2002.0409

    Article  Google Scholar 

  • Vaseeharan B, Ramasamy P, Chen JC (2010) Antibacterial activity of silver nanoparticles (AgNPs) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50(4):352–356. https://doi.org/10.1111/j.1472-765X.2010.02799.x

    Article  CAS  Google Scholar 

  • Vaseeharan B, Sargunar GC, Lin CY, Chen CJ (2012) Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus. Nanotech Dev 2(1):12–16. https://doi.org/10.4081/nd.2012.e3

    Article  CAS  Google Scholar 

  • Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E (2014) Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 9:e108876. https://doi.org/10.1371/journal.pone.0108876

    Article  CAS  Google Scholar 

  • Wu JP, Chen HC, Huang DJ (2009) Histopathological alterations in gills of white shrimp, Litopenaeus vannamei (Boone) after acute exposure to cadmium and zinc. Bull Environ Contam Toxicol 82:90–95. https://doi.org/10.1007/s00128-008-9582-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT for the support granted to the Basic Science Project number 258607 and Russian grand N18-29-24037. We also thank Tomsk Polytechnic University Competitiveness Enhancement Program, Project VIU-RS. Also, important recognition is given to the technicians Victor Joaquín Álvarez López and José Antonio Velázquez Garay, for their support during the experiments.

Funding

All sources of funding for the research were declared. The National Council for Science and Technology (CONACyT) granted MCCHS (CONACyT grant number 258607), while the Russian project N18-29-24037 supplied the silver nanoparticles of the project.

Author information

Authors and Affiliations

Authors

Contributions

MCCHS: leadership responsible for the research activity planning and execution, including mentorship external to the core team. Management and coordination responsibility for research activity planning. Planning with the group the experimental design and methodology. Responsible together with the histology group for the histopathology results. Preparation and translation of the work to be published together with the histopathology group

SAR: from the histopathology group. Responsible for the histology processing as well as for the analysis and description of the histopathology observed in the treated shrimps. Responsible for the analysis of the data and application of statistics. Preparation of the work to be published in conjunction with the leader and RLO

RLO: histopathology group. Responsible for the histology processing as well as for the analysis and description of the histopathology observed in the treated shrimps, together SAR and MCCHS. Analysis of the data and application of statistics. Preparation of the work to be published together with the leader and SAR

LMR: participate actively in the design of the experiments and in the execution of the tests. Contributes in obtaining the best shrimp juveniles and its better management during the experiments, provision of study materials, reagents, materials, and instrumentation

MAFN: participate actively in the design of the experiments and in the execution of the tests. Verification, as a part of the activity of the overall replication/reproducibility of results/experiments. Analysis of the data and application of statistics. Specially, critical review, commentary, and revision

CHRM: participate actively in the design of the experiments and in the execution of the tests. Critical review, commentary, or revision of the paper

AP: donation of the silver nanoparticles

NB: critical review, commentary, and revision of the paper

Cristina Chávez led the project, got the financial, formal analysis, investigation, data curation, writing original draft, and visualization, and changes was realized by all the authors.

Corresponding author

Correspondence to María-Cristina Chávez-Sánchez.

Ethics declarations

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed according to Mexican guidelines and policies stated in the NOM-062-ZOO-1999 (these guidelines apply mostly to mammalian species but we applied the same principles regarding animal welfare and care) and British guidelines for fish welfare reported by Ashley (2007).

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Sublethal concentrations of silver nanoparticles caused 23% mortality to shrimp

• Silver nanoparticles at sublethal levels cause pathological damage to shrimp

• Silver nanoparticles produce necrosis to different tissues and organs

• The treated shrimp could mitigate through their immune system the effects of AgNps

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Sánchez, MC., Abad-Rosales, S., Lozano-Olvera, R. et al. Silver nanoparticles induce histopathological alterations in juvenile Penaeus vannamei. Environ Sci Pollut Res 28, 8224–8234 (2021). https://doi.org/10.1007/s11356-020-11175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11175-3

Keywords

Navigation