Chemometric tools applied to optimize a fast solid-phase microextraction method for analysis of polycyclic aromatic hydrocarbons in produced water

Abstract

Chemometric tools are powerful strategies to efficiently optimize many processes. These tools were employed to optimize a fast-solid phase microextraction procedure, which was used for the analysis of polycyclic aromatic hydrocarbons (PAHs) in oil-based produced water using a Headspace–Solid Phase Microextraction technique (HS-SPME/GC-MS). This optimization was achieved with a 24 factorial design approach, where the final conditions for this extraction procedure were 10 μg L−1, 1 h, 92 °C (at headspace), and 0.62 mol L−1 for PAHs concentration, fiber exposition to headspace, temperature, and NaCl concentration, respectively. The limit of detection (LOD) in this protocol ranged from 0.2 to 41.4 ng L−1, while recovery values from 67.65 to 113.10%. Besides that, relative standard deviation (RSD) were lower than 8.39% considering high molecular weight compounds. Moreover, the proposed methodology in this work does not require any previous treatment of the sample and allows to quantify a higher number of PAHs. Notably, naphthalene was the major PAHs compound quantified in all samples of the produced water at 99.99 μg L−1. Altogether, these results supported this methodology as a suitable analytical strategy for fast determination of PAHs in produced water from oil-based industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Beiranvand M, Ghiasvand A (2020) Design and optimization of the VA-TV-SPME method for ultrasensitive determination of the PAHs in polluted water. Talanta 212:120809. https://doi.org/10.1016/j.talanta.2020.120809

    CAS  Article  Google Scholar 

  2. Bianchin JN, Nardini G, Merib J, Dias AN, Martendal E, Carasek E (2012) Simultaneous determination of polycyclic aromatic hydrocarbons and benzene, toluene, ethylbenzene and xylene in water samples using a new sampling strategy combining different extraction modes and temperatures in a single extraction solid-phase microextraction-gas chromatography-mass spectrometry procedure. J Chromatogr A 1233:22–29. https://doi.org/10.1016/j.chroma.2012.02.022

    CAS  Article  Google Scholar 

  3. Bispo JRL, Navickiene S, Dórea HS (2011) Method validation for SPE applied to determination of PAH in petroliferous industry effluent water. Am J Anal Chem 02:971–978. https://doi.org/10.4236/ajac.2011.28113

    CAS  Article  Google Scholar 

  4. Boitsov S, Mjøs SA, Meier S (2007) Identification of estrogen-like alkylphenols in produced water from offshore oil installations. Mar Environ Res 64:651–665. https://doi.org/10.1016/j.marenvres.2007.07.001

    CAS  Article  Google Scholar 

  5. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Chemosphere biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676. https://doi.org/10.1016/j.chemosphere.2011.05.005

    CAS  Article  Google Scholar 

  6. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters design, innovation, and discovery, 2nd edn. Wiley-Interscience

  7. Boyaci E, Rodríguez-Lafuente Á, Gorynski K et al (2015) Sample preparation with solid phase microextraction and exhaustive extraction approaches: comparison for challenging cases. Anal Chim Acta 873:14–30

    CAS  Article  Google Scholar 

  8. Butkovskyi A, Bruning H, Kools SAE, Rijnaarts HHM, van Wezel AP (2017) Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact, and implications for treatment strategies. Environ Sci Technol 51:4740–4754. https://doi.org/10.1021/acs.est.6b05640

    CAS  Article  Google Scholar 

  9. Chittick EA, Srebotnjak T (2017) An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management. J Environ Manag 204:502–509. https://doi.org/10.1016/j.jenvman.2017.09.002

    CAS  Article  Google Scholar 

  10. Chui QSH, Zucchini RR, Lichtig J (2001) Qualidade de medições em química analítica. estudo de caso: determinação de cádmio por espectrofotometria de absorção atômica com chama. Quim Nova 24:374–380

    CAS  Article  Google Scholar 

  11. Conama (2005) Resolução n 357, 18 de março de 2005. Diário Of 58–63. no. 053, de 18/03/2005

  12. Demirci A (2014) Factorial design optimization of solid phase microextraction for high-performance Liquid chromatography−ultraviolet spectrometry analysis of polycyclic aromatic hydrocarbons in cigarette filter tar. Polycycl Aromat Compd 34:115–134. https://doi.org/10.1080/10406638.2013.857358

    CAS  Article  Google Scholar 

  13. Dias AN, Simão V, Merib J, Carasek E (2013) Cork as a new (green) coating for solid-phase microextraction: determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry. Anal Chim Acta 772:33–39. https://doi.org/10.1016/j.aca.2013.02.021

    CAS  Article  Google Scholar 

  14. Doong RA, Chang SM, Sun YC (2000) Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 879:177–188. https://doi.org/10.1016/S0021-9673(00)00347-2

    CAS  Article  Google Scholar 

  15. Dórea HS, Bispo JRL, Aragão KAS, Cunha BB, Navickiene S, Alves JPH, Romão LPC, Garcia CAB (2007) Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe, Brazil. Microchem J 85:234–238. https://doi.org/10.1016/j.microc.2006.06.002

    CAS  Article  Google Scholar 

  16. Fernández-González V, Concha-Graña E, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2007) Solid-phase microextraction – gas chromatographic – tandem mass spectrometric analysis of polycyclic aromatic hydrocarbons towards the European Union water directive 2006 / 0129 EC. J Chromatogr A 1176:48–56. https://doi.org/10.1016/j.chroma.2007.11.006

    CAS  Article  Google Scholar 

  17. Gaujac A, Emídio ES, Navickiene S, Ferreira SLC, Dórea HS (2008) Multivariate optimization of a solid phase microextraction-headspace procedure for the determination of benzene, toluene, ethylbenzene and xylenes in effluent samples from a waste treatment plant. J Chromatogr A 1203:99–104

    CAS  Article  Google Scholar 

  18. Guo M, Gong Z, Allinson G, Tai P, Miao R, Li X, Jia C, Zhuang J (2016) Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere 144:1513–1520. https://doi.org/10.1016/j.chemosphere.2015.10.027

    CAS  Article  Google Scholar 

  19. He Y, Flynn SL, Folkerts EJ, Zhang Y, Ruan D, Alessi DS, Martin JW, Goss GG (2017) Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. Water Res 114:78–87. https://doi.org/10.1016/j.watres.2017.02.027

    CAS  Article  Google Scholar 

  20. Heidari H, Razmi H, Jouyban A (2012) Preparation and characterization of ceramic / carbon coated Fe 3 O 4 magnetic nanoparticle nanocomposite as a solid-phase microextraction adsorbent. J Chromatogr A 1245:1–7. https://doi.org/10.1016/j.chroma.2012.04.046

    CAS  Article  Google Scholar 

  21. Hesham AE, Khan S, Tao Y (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures : application of meta-genomic methods for community structure analyses. Environ Sci Pollut Res 19:3568–3578. https://doi.org/10.1007/s11356-012-0919-8

    CAS  Article  Google Scholar 

  22. Jabali Y, Millet M, El-Hoz M (2018) Determination of 16 polycyclic aromatic hydrocarbons (PAHs) in surface and groundwater in North Lebanon by using SPME followed by GC–ITMS/MS. Euro-Mediterranean J Environ Integr 3. https://doi.org/10.1007/s41207-018-0066-9

  23. King AJ, Readman JW, Zhou JL (2004) Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction – gas chromatography – mass spectrometry. Anal Chim Acta 523:259–267. https://doi.org/10.1016/j.aca.2004.07.050

    CAS  Article  Google Scholar 

  24. Li Q, Xu X, Lee FSC, Wang X (2006) Determination of trace PAHs in seawater and sediment pore-water by solid-phase microextraction (SPME) coupled with GC/MS. Sci China Ser B Chem 49:481–491. https://doi.org/10.1007/s11426-006-2026-5

    CAS  Article  Google Scholar 

  25. Li Y, Wang Y, Zhang J, Sun C (2012) Determination of 16 polycyclic aromatic hydrocarbons in water using fluorinated polyaniline-based solid-phase microextraction coupled with gas chromatography. Environ Monit Assess 184:4345–4353. https://doi.org/10.1007/s10661-011-2268-3

    CAS  Article  Google Scholar 

  26. Lourenço RA, de Oliveira FF, de Souza JM, Nudi AH, de Luca Rebello Wagener Â, de Fátima Guadalupe Meniconi M, Francioni E (2016) Monitoring of polycyclic aromatic hydrocarbons in a produced water disposal area in the Potiguar Basin, Brazilian equatorial margin. Environ Sci Pollut Res 23:17113–17122. https://doi.org/10.1007/s11356-016-6903-y

    CAS  Article  Google Scholar 

  27. Lourenço RA, Francioni E, Henrique A et al (2018) Bioaccumulation study of produced water discharges from Southeastern Brazilian offshore petroleum industry using feral fishes. Arch Environ Contam Toxicol 74:461–470. https://doi.org/10.1007/s00244-018-0510-5

    CAS  Article  Google Scholar 

  28. Luek JL, Gonsior M (2017) Organic compounds in hydraulic fracturing fluids and wastewaters: a review. Water Res 123:536–548. https://doi.org/10.1016/j.watres.2017.07.012

    CAS  Article  Google Scholar 

  29. Maghsoudi S, Noroozian E (2012) HP-SPME of volatile polycyclic aromatic hydrocarbons from water using multiwalled carbon nanotubes coated on a steel fiber through electrophoretic deposition. Chromatographia:913–921. https://doi.org/10.1007/s10337-012-2283-8

  30. Martinez E, Gros M, Lacorte S, Barceló D (2004) Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. In: Journal of Chromatography A. Elsevier, pp 181–188

  31. Meier BS, Goff J Le, Edvardsen RB, et al (2017) DNA damage and health effects in juvenile haddock exposed to sediment or produced water associated PAHs 4536:

  32. Menezes HC, Paiva MJN, Santos RR, Sousa LP, Resende SF, Saturnino JA, Paulo BP, Cardeal ZL (2013) A sensitive GC/MS method using cold fiber SPME to determine polycyclic aromatic hydrocarbons in spring water. Microchem J 110:209–214. https://doi.org/10.1016/j.microc.2013.03.010

    CAS  Article  Google Scholar 

  33. Oetjen K, Giddings CGS, McLaughlin M, Nell M, Blotevogel J, Helbling DE, Mueller D, Higgins CP (2017) Emerging analytical methods for the characterization and quantification of organic contaminants in flowback and produced water. Trends Environ Anal Chem 15:12–23

    CAS  Article  Google Scholar 

  34. OGP - International Association of Oil & Gas Producers (2005) Fate and effects of naturally occurring substances in produced water on the marine environment Report No 364

  35. Okogbue CO, Oyesanya OU, Anyiam OA, Omonona VO (2017) Assessment of pollution from produced water discharges in seawater and sediments in offshore, Niger Delta. Environ Earth Sci 76. https://doi.org/10.1007/s12665-017-6682-x

  36. Pimsee P, Sablayrolles C, Montréjaud-Vignoles M et al (2014) Dynamic behavior of polycyclic aromatic hydrocarbons and their derivatives after oils spill in water. J Environ Prot (Irvine, Calif) 05:681–693. https://doi.org/10.4236/jep.2014.58069

    CAS  Article  Google Scholar 

  37. Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Laetitia H, Shadmehri Toosi A, Yap CK (2018) First report of bioaccumulation and bioconcentration of aliphatic hydrocarbons (AHs) and persistent organic pollutants (PAHs, PCBs and PCNs) and their effects on alcyonacea and scleractinian corals and their endosymbiotic algae from the Persian Gulf, Iran. Sci Total Environ 627:141–157. https://doi.org/10.1016/j.scitotenv.2018.01.185

    CAS  Article  Google Scholar 

  38. Ray JP, Engelhardt RF (1992) In: Ray JP, Engelhardt FR (eds) Produced water: technological environmental issues and solutions. Plenum Press, New York

    Chapter  Google Scholar 

  39. Rianawati E, Balasubramanian R (2009) Optimization and validation of solid phase micro-extraction ( SPME ) method for analysis of polycyclic aromatic hydrocarbons in rainwater and stormwater. Phys Chem Earth 34:857–865. https://doi.org/10.1016/j.pce.2009.07.003

    Article  Google Scholar 

  40. Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 27:771–780

    CAS  Article  Google Scholar 

  41. Røe Utvik TI (1999) Chemical characterisation of produced water from four offshore oil production platforms in the North Sea. Chemosphere 39:2593–2606. https://doi.org/10.1016/S0045-6535(99)00171-X

    Article  Google Scholar 

  42. Røe TI, Durell GS, Johnsen S (1999) Determining produced water originating polycyclic aromatic hydrocarbons in North Sea waters: comparison of sampling techniques. Mar Pollut Bull 38:977–989

    Article  Google Scholar 

  43. Souza-Silva ÉA, Jiang R, Rodríguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environm Anal TrAC Trends Anal Chem 71:224–235

    CAS  Article  Google Scholar 

  44. Sun C, Zhang J, Ma Q, Chen Y, Ju H (2017) Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: sediment–water partitioning, source identification and environmental health risk assessment. Environ Geochem Health 39:63–74. https://doi.org/10.1007/s10653-016-9807-3

    CAS  Article  Google Scholar 

  45. Sundt RC, Ruus A, Jonsson H, Skarphéðinsdóttir H, Meier S, Grung M, Beyer J, Pampanin DM (2012) Biomarker responses in Atlantic cod (Gadus morhua) exposed to produced water from a North Sea oil field: laboratory and field assessments. Mar Pollut Bull 64:144–152. https://doi.org/10.1016/j.marpolbul.2011.10.005

    CAS  Article  Google Scholar 

  46. Suterio NG, Do Carmo SN, Budziak D et al (2018) Use of a natural sorbent as alternative solid-phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry. J Braz Chem Soc 29:2417–2425. https://doi.org/10.21577/0103-5053.20180119

    CAS  Article  Google Scholar 

  47. Yang B-C, Fang S-F, Wan X-J et al (2017) Quantification of monohydroxylated polycyclic aromatic.pdf. Anal Chim Acta 937:68–74

    Article  Google Scholar 

  48. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852. https://doi.org/10.1021/ac00062a008

    CAS  Article  Google Scholar 

  49. Zheng J, Chen B, Thanyamanta W, Hawboldt K, Zhang B, Liu B (2016) Offshore produced water management: a review of current practice and challenges in harsh/Arctic environments. Mar Pollut Bull 104:7–19

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Longhinotti, E (PQ/CNPq #306896/2018-4) and Nascimento, R.F. (PQ/CNPq #305074/2018-0) are thankful to PETROBRÁS, CNPq, CAPES and FUNCAP for financial support and fellowships provided.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. PETROBRÁS, CNPq, CAPES, and FUNCAP provided also financial support and fellowships for this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ronaldo F. do Nascimento or Elisane Longhinotti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ester Heath

Electronic supplementary material

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, P.H.M., Camelo, A.L.M., de Lima, A.C.A. et al. Chemometric tools applied to optimize a fast solid-phase microextraction method for analysis of polycyclic aromatic hydrocarbons in produced water. Environ Sci Pollut Res 28, 8012–8021 (2021). https://doi.org/10.1007/s11356-020-10881-2

Download citation

Keywords

  • Produced water
  • Polycyclic aromatic hydrocarbons
  • Solid-phase microextraction
  • Chemometric tools
  • Gas chromatography
  • Mass spectrometry