Skip to main content

Advertisement

Log in

Engineered topographies and hydrodynamics in relation to biofouling control—a review

  • Physical, Chemical and Biological Process Techniques and Tools for Pollution Prevention and Sustainability
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biofouling, the unwanted growth of microorganisms on submerged surfaces, has appeared as a significant impediment for underwater structures, water vessels, and medical devices. For fixing the biofouling issue, modification of the submerged surface is being experimented as a non-toxic approach worldwide. This technique necessitated altering the surface topography and roughness and developing a surface with a nano- to micro-structured pattern. The main objective of this study is to review the recent advancements in surface modification and hydrodynamic analysis concerning biofouling control. This study described the occurrence of the biofouling process, techniques suitable for biofouling control, and current state of research advancements comprehensively. Different biofilms under various hydrodynamic conditions have also been outlined in this study. Scenarios of biomimetic surfaces and underwater super-hydrophobicity, locomotion of microorganisms, nano- and micro-hydrodynamics on various surfaces around microorganisms, and material stiffness were explained thoroughly. The review also documented the approaches to inhibit the initial settlement of microorganisms and prolong the subsequent biofilm formation process for patterned surfaces. Though it is well documented that biofouling can be controlled to various degrees with different nano- and micro-structured patterned surfaces, the understanding of the underlying mechanism is still imprecise. Therefore, this review strived to present the possibilities of implementing the patterned surfaces as a physical deterrent against the settlement of fouling organisms and developing an active microfluidic environment to inhibit the initial bacterial settlement process. In general, microtopography equivalent to that of bacterial cells influences attachment via hydrodynamics, topography-induced cell placement, and air-entrapment, whereas nanotopography influences physicochemical forces through macromolecular conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul Azis PK, Al-Tisan I, Sasikumar N (2001) Biofouling potential and environmental factors of seawater at a desalination plant intake. Desalination 135:69–82

    Article  Google Scholar 

  • Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M (2017) Antimicrobial polymers in the nano-world. Nanomaterials 7(2):48

    Article  CAS  Google Scholar 

  • Andersson M, Berntsson K, Jonsson P, Gatenholm P (1999) Microtextured surfaces: towards macrofouling resistant coatings. Biofouling 14:167–178

    Article  Google Scholar 

  • Avron JE, Kenneth O, Oaknin DH (2005) Pushmepullyou: an efficient micro-swimmer. New J Phys 7:234–234

    Article  Google Scholar 

  • Bechert DW, Bruse M, Hage W (2000a) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28:403–412

    Article  Google Scholar 

  • Bechert DW, Bruse M, Hage W, Meyer R (2000b) Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87:157–171

    Article  CAS  Google Scholar 

  • Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102

    Article  CAS  Google Scholar 

  • Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20:43–51

    Article  CAS  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  • Boase NRB, Torres MDT, Fletcher NL, de la Fuente-Nunez C, Fairfull-Smith KE (2018) Polynitroxide copolymers to reduce biofilm fouling on surfaces. Polym Chem 9(43):5308–5318

    Article  CAS  Google Scholar 

  • Bol M, Mohle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186

    Article  CAS  Google Scholar 

  • Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    Article  CAS  Google Scholar 

  • Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244

    Article  CAS  Google Scholar 

  • Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA (2002) Microtopographic cues for settlement of zoospores of the green fouling alga enteromorpha. Biofouling 18:229–236

    Article  Google Scholar 

  • Canning-Clode J, Fofonoff P, McCann L, Carlton J, Ruiz G (2013) Marine invasions on a subtropical island: fouling studies and new records in a recent marina on Madeira Island (Eastern Atlantic Ocean). Aquat Invasions 8:261–270

    Article  Google Scholar 

  • Carl C, Poole AJ, Sexton BA, Glenn FL, Vucko MJ, Williams MR, Whalan S, de Nys R (2012) Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography. Biofouling 28:175–186

    Article  CAS  Google Scholar 

  • Carlborg C, Wijngaart W (2011) Sustained superhydrophobic friction reduction at high liquid pressures and large flows. Langmuir 27:487–493

    Article  CAS  Google Scholar 

  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling 22:11–21

    Article  CAS  Google Scholar 

  • Champ MA (2003) Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull 46:935–940

    Article  CAS  Google Scholar 

  • Characklis WG, James DBIB (2009) Bioengineering report. Fouling biofilm development: a process analysis. Biotechnol Bioeng., 23(9), 1923-60 (1981). Biotechnol Bioeng 102(2):309, 310-47

  • Chen H, Rosengarten G, Li M, Nordon R (2012) Design of microdevices for long-term live cell imaging. J Micromech Microeng 22:065033

    Article  CAS  Google Scholar 

  • Cheng Y, Feng G, Moraru CI (2019) Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front Microbiol 10:191

    Article  Google Scholar 

  • Cheng Y, Moraru CI (2018) Long-range interactions keep bacterial cells from liquid-solid interfaces: evidence of a bacteria exclusion zone near Nafion surfaces and possible implications for bacterial attachment. Colloids Surf B: Biointerfaces 162:16–24

    Article  CAS  Google Scholar 

  • Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2:89–94

    Article  CAS  Google Scholar 

  • Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43:737–753

    Article  Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Invertebr Reprod Dev 22:67–76

    Article  CAS  Google Scholar 

  • Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB (2011) Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Biofouling 27:881–891

    Article  Google Scholar 

  • Cosson J, Huitorel P, Gagnon C (2003) How spermatozoa come to be confined to surfaces. Cell Motil Cytoskeleton 54:56–63

    Article  CAS  Google Scholar 

  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interf Sci 17:142–149

    Article  CAS  Google Scholar 

  • Crimaldi J, Koseff J, Monismith S (2007) Structure of mass and momentum fields over a model aggregation of benthic filter feeders. Biogeosciences 4:269–282

    Article  Google Scholar 

  • Crowdy D, Lee S, Samson O, Lauga E, Hosoi A (2011) A two-dimensional model of low-Reynolds number swimming beneath a free surface. J Fluid Mech 681:24–47

    Article  Google Scholar 

  • Darnton NC, Turner L, Rojevsky S, Berg HC (2010) Dynamics of bacterial swarming. Biophys J 98:2082–2090

    Article  CAS  Google Scholar 

  • Dehkharghani A, Waisbord N, Dunkel J, Guasto JS (2019) Bacterial scattering in microfluidic crystal flows reveals giant active Taylor–Aris dispersion. Proc Natl Acad Sci 116:11119–11124

    Article  CAS  Google Scholar 

  • Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF (2015) Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:021010

    Article  CAS  Google Scholar 

  • Dobretsov S, Abed RM, Teplitski M (2013) Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29:423–441

    Article  CAS  Google Scholar 

  • Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (2009) Dancing volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102:168101–168101

    Article  CAS  Google Scholar 

  • Echeverria C, Torres MDT, Fernández-García M, de la Fuente-Nunez C, Muñoz-Bonilla A (2020) Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 43:107586

    Article  CAS  Google Scholar 

  • Evans AA, Lauga E (2010) Propulsion by passive filaments and active flagella near boundaries. Phys Rev E Stat Nonlinear Soft Matter Phys 82:041915

    Article  CAS  Google Scholar 

  • Feng G, Cheng Y, Wang S, Borca-Tasciuc DA, Worobo RW, Moraru CI (2015) Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes 1:15022

    Article  CAS  Google Scholar 

  • Feng G, Cheng Y, Wang S, Hsu LC, Feliz Y, Borca-Tasciuc DA et al (2014) Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling 30:1253–1268

    Article  Google Scholar 

  • Flemming H-C, Ridgway H (2009) Biofilm control: conventional and alternative approaches. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and Industrial Biofouling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 103–117

    Chapter  Google Scholar 

  • Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J (2013) Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci U S A 110:1–6

    Article  CAS  Google Scholar 

  • Friedmann E (2010) The optimal shape of riblets in the viscous sublayer. J Math Fluid Mech 12:243–265

    Article  Google Scholar 

  • Friedmann E, Portl J, Richter T (2010) A study of shark skin and its drag reducing mechanism. In: Rannacher R, Sequeira A (eds) Advances in Mathematical Fluid Mechanics: dedicated to Giovanni Paolo Galdi on the occasion of his 60th birthday. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 271–285

    Google Scholar 

  • Garrido KD, Palacios RJS, Lee C, Kang S (2014) Impact of conditioning film on the initial adhesion of E. coli on polysulfone ultrafiltration membrane. J Ind Eng Chem 20:1438–1443

    Article  CAS  Google Scholar 

  • Goldstein DB, Tuan TC (1998) Secondary flow induced by riblets. J Fluid Mech 363:115–151

    Article  CAS  Google Scholar 

  • Granhag L, Larsson AI, Jonsson P (2007) Algal spore settlement and germling removal as a function of flow speed. Mar Ecol-Progress Ser 344:63–70

    Article  Google Scholar 

  • Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Annu Rev Fluid Mech 44:373–400

    Article  Google Scholar 

  • Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci 3:453–470

    Article  Google Scholar 

  • Halder P, Nasabi M, Lopez FJ, Jayasuriya N, Bhattacharya S, Deighton M, Mitchell A, Bhuiyan MA (2013) A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment. Biofouling 29:697–713

    Article  Google Scholar 

  • Halder P, Nasabi M, Jayasuriya N, Shimeta J, Deighton M, Bhattacharya S, Mitchell A, Bhuiyan MA (2014) An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. Biofouling 30:695–707

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Harder T (2009) Marine epibiosis: concepts, ecological consequences and host defence. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and Industrial Biofouling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 219–231

    Chapter  Google Scholar 

  • Hasan J, Raj S, Yadav L, Chatterjee K (2015) Engineering a nanostructured “super surface” with superhydrophobic and superkilling properties. RSC Adv 5:44953–44959

    Article  CAS  Google Scholar 

  • Heydt M, Rosenhahn A, Grunze M, Pettitt M, Callow ME, Callow JA (2007) Digital in-line holography as a three-dimensional tool to study motile marine organisms during their exploration of surfaces. J Adhes 83:417–430

    Article  CAS  Google Scholar 

  • Heydt M, Divós P, Grunze M, Rosenhahn A (2009) Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur Phys J E 30:141–148

    Article  CAS  Google Scholar 

  • Heydt M, Pettitt ME, Cao X, Callow ME, Callow JA, Grunze M, Rosenhahn A (2012) Settlement behavior of zoospores of ulva linza during surface selection studied by digital holographic microscopy. Biointerphases 7:33

    Article  CAS  Google Scholar 

  • Hill J, Kalkanci O, McMurry JL, Koser H (2007) Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:068101

    Article  CAS  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    Article  CAS  Google Scholar 

  • Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617

    Article  CAS  Google Scholar 

  • Hossain N, Zaini J, Mahlia TMI, Azad AK (2019) Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renew Energy 131:617–624

    Article  CAS  Google Scholar 

  • Hossain N, Bhuiyan MA, Pramanik BK, Nizamuddin S, Griffin G (2020) Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: a critical review. J Clean Prod 255:120261

    Article  CAS  Google Scholar 

  • Hsu L, Fang J, Borca-Tasciuc D, Worobo R, Moraru CI (2013) The effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol 79:2703–2712

    Article  CAS  Google Scholar 

  • Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology. Cell Physiol 287:C1–C11

    Article  CAS  Google Scholar 

  • Huang KS, Yang CH, Huang SL, Chen CY, Lu YY, Lin YS (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578

    Article  CAS  Google Scholar 

  • Hwang HJ, Song S (2009) The effects of grooves on the flow rate in a microchannel. BioChip J 2:123–126

    Google Scholar 

  • Jeong HE, Kim I, Karam P, Choi HJ, Yang P (2013) Bacterial recognition of silicon nanowire arrays. Nano Lett 13:2864–2869

    Article  CAS  Google Scholar 

  • Judzewitsch PR, Nguyen TK, Shanmugam S, Wong EHH, Boyer C (2018) Towards sequence-controlled antimicrobial polymers: effect of polymer block order on antimicrobial activity. Angew Chem Int Ed 130:4649–4654

    Article  Google Scholar 

  • Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL, Stoodley P, Parsek MR (2007) Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J Bacteriol 189:8357–8360

    Article  CAS  Google Scholar 

  • Koch D, Subramanian G (2011) Collective hydrodynamics of swimming microorganisms: living fluids. Annu Rev Fluid Mech 43:637–659

    Article  Google Scholar 

  • Kochkodan V, Hilal N (2015) A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356:187–207

    Article  CAS  Google Scholar 

  • Koehl MR (2007) Mini review: hydrodynamics of larval settlement into fouling communities. Biofouling 23:357–368

    Article  CAS  Google Scholar 

  • Köhler J, Hansen PD, Wahl M (1999) Colonization patterns at the substratum-water interface: how does surface microtopography influence recruitment patterns of sessile organisms? Biofouling 14(3):237–248

    Article  Google Scholar 

  • Kolewe KW, Peyton SR, Schiffman JD (2015) Fewer bacteria adhere to softer hydrogels. ACS Appl Mater Interfaces 7:19562–19569

    Article  CAS  Google Scholar 

  • Kolewe KW, Zhu J, Mako NR, Nonnenmann SS, Schi JD (2018) Bacterial adhesion is affected by the thickness and stiffness of Poly(ethylene glycol) Hydrogels. ACS Appl Mater Interfaces 10:2275–2281

    Article  CAS  Google Scholar 

  • Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412

    Article  CAS  Google Scholar 

  • Lauga E (2007) Floppy swimming: viscous locomotion of actuated elastica. Phys Rev E 75:041916

    Article  CAS  Google Scholar 

  • Lauga E, Powers TR (2008) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601

    Article  Google Scholar 

  • Lee YK, Won YJ, Yoo JH, Ahn KH, Lee CH (2013) Flow analysis and fouling on the patterned membrane surface. J Membr Sci 427:320–325

    Article  CAS  Google Scholar 

  • Lee J-H, Kim Y-G, Raorane CJ, Ryu SY, Shim J-J, Lee J (2019) The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling 35:758–767

    Article  CAS  Google Scholar 

  • Li J, Attila C, Wang L, Wood T, Valdes J, Bentley W (2007) Quorum sensing in Escherichia Coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 189:6011–6020

    Article  CAS  Google Scholar 

  • Li Y, Ning C (2019) Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact Mater 4:189–195

    Article  Google Scholar 

  • Ling J, Myan FWY (2018) Assessing bioinspired topographies for their antifouling potential control using computational fluid dynamics (CFD). MATEC Web of Conferences 152, 02004

  • Long CJ, Finlay JA, Callow ME, Callow JA, Brennan AB (2010a) Engineered antifouling microtopographies: mapping preferential and inhibitory microenvironments for zoospore attachment. Biofouling 26:941–952

    Article  Google Scholar 

  • Long CJ, Schumacher JF, Robinson PA 2nd, Finlay JA, Callow ME, Callow JA, Brennan AB (2010b) A model that predicts the attachment behavior of Ulva linza zoospores on surface topography. Biofouling 26:411–419

    Article  CAS  Google Scholar 

  • Marmur A (2006a) Super-hydrophobicity fundamentals: implications to biofouling prevention. Biofouling 22:107–115

    Article  CAS  Google Scholar 

  • Marmur A (2006b) Underwater superhydrophobicity: theoretical feasibility. Langmuir 22:1400–1402

    Article  CAS  Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    Article  CAS  Google Scholar 

  • Mieszkin S, Callow ME, Callow JA (2013) Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling 29:1097–1113

    Article  CAS  Google Scholar 

  • Mishra U (2019) Lotus-inspired biodegradable water repellent material developed. The Hindu Business Line, New Delhi

    Google Scholar 

  • Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    Article  CAS  Google Scholar 

  • Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62

    Article  CAS  Google Scholar 

  • Muthukrishnan T, Abed RMM, Dobretsov S, Kidd B, Finnie AA (2014) Long-term microfouling on commercial biocidal fouling control coatings. Biofouling 30:1155–1164

    Article  CAS  Google Scholar 

  • Myan FWY, Min LK, Hong LC, Walker J (2018) A numerical assessment of microtopographies with varied geometries in relation to biofouling control. J Eng Sci Technol 13:67–78

    Google Scholar 

  • Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds number: three linked spheres. Phys Rev E Stat Nonlinear Soft Matter Phys 69:062901

    Article  CAS  Google Scholar 

  • Nguyen DHK, Nguyen VTH, Truong VK, Sbarski I, Wang J, Balcytis A (2018) Role of topological scale in the differential fouling of Pseudomonas aeruginosa and Staphylococcus aureus bacterial cells on wrinkled gold coated polystyrene surfaces. Nanoscale 10:5089–5096

    Article  CAS  Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840

    Article  CAS  Google Scholar 

  • Nilsson LM, Thomas WE, Trintchina E, Vogel V, Sokurenko EV (2006) Catch bond-mediated adhesion without a shear threshold: trimannose versus monomannose interactions with the FimH adhesin of Escherichia coli. J Biol Chem 281:16656–16663

    Article  CAS  Google Scholar 

  • Niu C, Robbins CM, Pittman KJ, Osborn JL, Stubblefield BA, Simmons RB, Gilbert ES (2013) LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities. FEMS Microbiol Ecol 83:778–791

    Article  CAS  Google Scholar 

  • Or Y, Murray RM (2009) Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys Rev E Stat Nonlinear Soft Matter Phys 79:045302

    Article  CAS  Google Scholar 

  • Ou J, Perot J, Rothstein J (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  CAS  Google Scholar 

  • Ou J, Rothstein J (2005) Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids 17:103606

    Article  CAS  Google Scholar 

  • Patankar NA (2004) Mimicking the Lotus effect: influence of double roughness structures and slender pillars. Langmuir 20:8209–8213

    Article  CAS  Google Scholar 

  • Petronis Š, Berntsson K, Gold J, Gatenholm P (2000) Design and microstructuring of PDMS surfaces for improved marine biofouling resistance. J Biomater Sci Polym Ed 11:1051–1072

    Article  CAS  Google Scholar 

  • Picioreanu C, van Loosdrecht M, Heijnen S (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218

    Article  CAS  Google Scholar 

  • Picioreanu C, Vrouwenvelder JS, van Loosdrecht MCM (2009) Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J Membr Sci 345:340–354

    Article  CAS  Google Scholar 

  • Poetes R, Holtzmann K, Franze K, Steiner U (2010) Metastable underwater superhydrophobicity. Phys Rev Lett 105:166104

    Article  CAS  Google Scholar 

  • Pradhan S, Kumar S, Mohanty S, Nayak SK (2019) Environmentally benign fouling-resistant marine coatings: a review. Polymer-Plastics Technol Mater 58:498–518

    Article  CAS  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  • Qian P-Y, Rittschof D, Sreedhar B, Chia FS (1999) Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Marine Ecol-Progress Ser 191:141–151

    Article  Google Scholar 

  • Qian PY, Lau SC, Dahms HU, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol (New York) 9:399–410

    Article  CAS  Google Scholar 

  • Railkin AI (2004) Marine biofouling: colonization processes and defenses, vol 320. CRC Press, Boca Raton

    Google Scholar 

  • Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M (2010) The role of “inert” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 12:4275–4286

    Article  CAS  Google Scholar 

  • Rosenhahn A, Sendra GH (2012) Surface sensing and settlement strategies of marine biofouling organisms. Biointerphases 7:63

    Article  CAS  Google Scholar 

  • Sauer MM, Jakob RP, Eras J, Baday S, Eris D, Navarra G, Bernèche S, Ernst B, Maier T, Glockshuber R (2016) Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun 7:10738

    Article  CAS  Google Scholar 

  • Scardino AJ, Harvey E, De Nys R (2006) Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling 22:55–60

    Article  CAS  Google Scholar 

  • Scardino AJ, Guenther J, de Nys R (2008) Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling 24:45–53

    Article  CAS  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    Article  CAS  Google Scholar 

  • Schumacher JF, Long CJ, Callow ME, Finlay JA, Callow JA, Brennan AB (2008) Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Langmuir 24:4931–4937

    Article  CAS  Google Scholar 

  • Shapere A, Wilczek F (1989) Geometry of self-propulsion at low Reynolds number. J Fluid Mech 198:557–585

    Article  Google Scholar 

  • Song F, Ren D (2014) Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells. Langmuir 30:10354–10362

    Article  CAS  Google Scholar 

  • Song F, Koo H, Ren D (2015) Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 94:1027–1034

    Article  CAS  Google Scholar 

  • Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001) Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67:5608–5613

    Article  CAS  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    Article  CAS  Google Scholar 

  • Sweat LH, Johnson KB (2013) The effects of fine-scale substratum roughness on diatom community structure in estuarine biofilms. Biofouling 29:879–890

    Article  Google Scholar 

  • Taherzadeh D, Picioreanu C, Küttler U, Simone A, Wall W, Horn H (2009) Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnol Bioeng 105:600–610

    Article  CAS  Google Scholar 

  • Tovar-Lopez FJ, Rosengarten G, Westein E, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS (2010) A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10:291–302

    Article  CAS  Google Scholar 

  • Tretheway DC, Meinhart C (2010) A generating mechanism for apparent fluid slip in hydrophobic microchannels. SOCAR Proceedings 2010:60–68

    Google Scholar 

  • Truong VK, Webb HK, Fadeeva E, Chichkov BN, Wu AH, Lamb R, Wang JY, Crawford RJ, Ivanova EP (2012) Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling 28:539–550

    Article  CAS  Google Scholar 

  • Van Oss CJ (1993) Acid-base interfacial interactions in aqueous media. Colloids Surf A Physicochem Eng Asp 78:1–49

    Article  Google Scholar 

  • Vigeant MA, Ford RM, Wagner M, Tamm LK (2002) Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol 68:2794–2801

    Article  CAS  Google Scholar 

  • Vladkova T (2009) Surface modification approach to control biofouling. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and Industrial Biofouling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 135–163

    Chapter  Google Scholar 

  • Vucko MJ, Poole AJ, Sexton BA, Glenn FL, Carl C, Whalan S, de Nys R (2013) Combining a photocatalyst with microtopography to develop effective antifouling materials. Biofouling 29:751–762

    Article  CAS  Google Scholar 

  • Wang Y, Guan A, Isayeva I, Vorvolakos K, Das S, Li Z, Phillips KS (2016) Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials 95:74–85

    Article  CAS  Google Scholar 

  • Weiße S, Heydt M, Maier T, Schulz S, Spatz JP, Grunze M, Haraszti T, Rosenhahn A (2011) Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks. Phys Chem Chem Phys 13:13395–13402

    Article  CAS  Google Scholar 

  • Weisse S, Heddergott N, Heydt M, Pflasterer D, Maier T, Haraszti T, Grunze M, Engstler M, Rosenhahn A (2012) A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PLoS One 7:e37296

    Article  CAS  Google Scholar 

  • Wen L, Weaver JC, Lauder GV (2014) Biomimetic shark skin: design, fabrication and hydrodynamic function. J Exp Biol 217:1656–1666

    Article  Google Scholar 

  • Willey JM, Sherwood L, Woolverton CJ, Prescott LM (2008) Prescott, Harley, and Klein’s microbiology. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Wu AH, Nakanishi K, Cho KL, Lamb R (2013) Diatom attachment inhibition: limiting surface accessibility through air entrapment. Biointerphases 8:5

    Article  Google Scholar 

  • Xavier KB, Miller ST, Lu W, Kim JH, Rabinowitz J, Pelczer I, Semmelhack MF, Bassler BL (2007) Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem Biol 2:128–136

    Article  CAS  Google Scholar 

  • Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surfacec haracteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7:14254–14261

    Article  CAS  Google Scholar 

  • Zander ZK, Becker ML (2017) Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett 7(1):16–25

    Article  CAS  Google Scholar 

  • Zhang J, Huang J, Say C, Dorit RL, Queeney KT (2018) Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates. J Colloid Interface Sci 519:203–213

    Article  CAS  Google Scholar 

  • Zhang W, Sileika TS, Chen C, Liu Y, Lee J, Packman AI (2011) A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions. Biotechnol Bioeng 108:2571–2582

    Article  CAS  Google Scholar 

  • Zhang X, Brodus D, Hollimon V, Hu H (2017) A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem Central J 11:18

    Article  CAS  Google Scholar 

  • Zilman G, Novak J, Benayahu Y (2008) How do larvae attach to a solid in a laminar flow? Mar Biol 154:1–26

    Article  Google Scholar 

  • Zyncoln L, Myan FWY (2019) The numerical analysis to understand the characteristics of flow around a honeycomb topography in relation to biofouling control. AIP Conference Proceedings 2137:040002

    Article  Google Scholar 

  • Or Y, Zhang S, Murray RM (2011) Dynamics and stability of low-Reynolds-number swimming near a wall. SIAM J Appl Dyn Syst 10(3):1013–1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed A Bhuiyan.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, P., Hossain, N., Pramanik, B.K. et al. Engineered topographies and hydrodynamics in relation to biofouling control—a review. Environ Sci Pollut Res 28, 40678–40692 (2021). https://doi.org/10.1007/s11356-020-10864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10864-3

Keywords

Navigation