Abid M, Ngaruiya G, Scheffran J, Zulfiqar F (2017) The role of social networks in agricultural adaptation to climate change: implications for sustainable agriculture in Pakistan. Climate 5:85
Article
Google Scholar
Abid M, Scheffran J, Schneider UA, Ashfaq M (2015) Farmers’ perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province. Pak Earth Syst Dynam 6:225–243. https://doi.org/10.5194/esd-6-225-2015
Article
Google Scholar
Abid M, Schilling J, Scheffran J, Zulfiqar F (2016) Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci Total Environ 547:447–460. https://doi.org/10.1016/j.scitotenv.2015.11.125
CAS
Article
Google Scholar
Ahmad A et al (2015) Impact of climate change on the rice–wheat cropping system of Pakistan. In: Handbook of climate change and agroecosystems: the Agricultural Model Intercomparison and Improvement Project integrated crop and economic assessments, part 2. World Scientific, pp 219–258
Ali S, Liu Y, Ishaq M, Shah T, Abdullah IA, Din IU (2017) Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods 6. https://doi.org/10.3390/foods6060039
AMIS (2018) Agriculture marketing information service. Directorate of Agriculture (Economics & Marketing) Punjab, LahoreAgriculture Statistics of Pakistan. http://www.amis.pk/Agristatistics/Statistics.aspx. Accessed 10 Jul 2020
Arshad M, Amjath-Babu TS, Krupnik TJ, Aravindakshan S, Abbas A, Kächele H, Müller K (2017) Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. Paddy Water Environ 15:249–261. https://doi.org/10.1007/s10333-016-0544-0
Article
Google Scholar
Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML (2020) Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain 22:5045–5075. https://doi.org/10.1007/s10668-019-00414-4
Article
Google Scholar
Barnett J, Lambert S, Fry I (2008) The hazards of indicators: insights from the environmental vulnerability index. Ann Assoc Am Geogr 98:102–119
Article
Google Scholar
Becker D, Schneiderbauer S, Forrester JM, Pedoth L (2015) Guidelines for development of indicators, indicator systems and provide challenges. CRED, Louvain
Google Scholar
Berry PM, Rounsevell MDA, Harrison PA, Audsley E (2006) Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environ Sci Pol 9:189–204. https://doi.org/10.1016/j.envsci.2005.11.004
Article
Google Scholar
Binder CR, Feola G, Steinberger JK (2010) Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ Impact Assess Rev 30:71–81
Article
Google Scholar
Birkmann J (2006) Indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In J Birkmann (Ed.) Measuring vulnerability to natural hazards: Towards disaster resilient societies (pp. 55–77), United Nations University Press, Japan
BOS (2017) Bureau of Statistics. Government of Punjab. Final estimates of major Kharif crops in the Punjab 2016–17. https://bos.punjab.gov.pk/system/files/Kharif.2016-17.pdf. Accessed 15 Nov 2019
Chaudhry Q-u-Z, Mahmood A, Rasul G, Afzaal M (2009) Climate change indicators of Pakistan. Pakistan Meteorological Department
Cutter SL, Burton CG, Emrich CT (2010) Disaster resilience indicators for benchmarking baseline conditions. J Homel Secur Emerg Manag 7:23
Google Scholar
Davidson MA (2006) Designing for disasters. Massachusetts Coastal Hazards Commission, NOAA Coastal Services Center
Eakin H, Luers AL (2006) Assessing the vulnerability of social-environmental systems. Annu Rev Environ Resour 31:365–394. https://doi.org/10.1146/annurev.energy.30.050504.144352
Article
Google Scholar
Eriksen SH, Kelly PM (2007) Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig Adapt Strateg Glob Chang 12:495–524
Article
Google Scholar
Fahad S, Wang J (2018) Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy 79:301–309. https://doi.org/10.1016/j.landusepol.2018.08.018
Article
Google Scholar
FAO (2009) Global agriculture towards 2050. High level expert forum—how to feed world in 2050. Food and Agriculture Organization. Rome, Italy. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
Field CB et al (2014) IPCC, 2014: Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York
Fussel HM, Klein RJT (2006) Climate change vulnerability assessments: an evolution of conceptual thinking. Clim Chang 75:301–329. https://doi.org/10.1007/s10584-006-0329-3
Article
Google Scholar
Gallopin GC (1996) Environmental and sustainability indicators and the concept of situational indicators. A systems approach. Environ Model Assess 1:101–117
Article
Google Scholar
Glaas E, Jonsson A, Hjerpe M, Andersson-Sköld Y (2010) Managing climate change vulnerabilities: formal institutions and knowledge use as determinants of adaptive capacity at the local level in Sweden. Local Environ 15:525–539
Article
Google Scholar
GoP (2019) Government of Punjab. Statistical pocket book of the Punjab. Bureau of Statistics Lahore
Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23:679–701. https://doi.org/10.1017/s1355770x18000232
Article
Google Scholar
Hina S, Saleem F (2019) Historical analysis (1981–2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Clim Res 78:189–204. https://doi.org/10.3354/cr01568
Article
Google Scholar
Hinkel J (2011) “Indicators of vulnerability and adaptive capacity”: towards a clarification of the science–policy interface. Glob Environ Change-Human Policy Dimens 21:198–208. https://doi.org/10.1016/j.gloenvcha.2010.08.002
Article
Google Scholar
Jamir C, Sharma N, Sengupta A, Ravindranath NH (2013) Farmers’ vulnerability to climate variability in Dimapur district of Nagaland, India. Reg Environ Chang 13:153–164. https://doi.org/10.1007/s10113-012-0324-3
Article
Google Scholar
Khan MA, Abid H, Irfan M, Sonila H (2011) Vulnerability to climate change: adaptation strategies and layers of resilience in semi arid zones of Pakistan. Pak J Agric Res 24:65–74
Google Scholar
Khan NA, Gao Q, Abid M (2020a) Public institutions’ capacities regarding climate change adaptation and risk management support in agriculture: the case of Punjab Province, Pakistan. Sci Rep 10:14111. https://doi.org/10.1038/s41598-020-71011-z
CAS
Article
Google Scholar
Khan NA, Gao Q, Iqbal MA, Abid M (2020b) Modeling food growers’ perceptions and behavior towards environmental changes and its induced risks: evidence from Pakistan. Environ Sci Pollut Res Int 27:20292–20308. https://doi.org/10.1007/s11356-020-08341-y
Article
Google Scholar
Khan NA, Qijie G, Ali S, Shahbaz B, Shah AA (2019a) Farmers’ use of mobile phone for accessing agricultural information in Pakistan: a case of Punjab province. Cienc Rural 49. https://doi.org/10.1590/0103-8478cr20181016
Khan NA, Qijie G, Sertse SF, Nabi MN, Khan P (2019b) Farmers’ use of mobile phone-based farm advisory services in Punjab, Pakistan. Inf Dev 36:390–402. https://doi.org/10.1177/0266666919864126
Article
Google Scholar
Khatri I (2019) Current locust threats and measures in Pakistan. Pak J Agric Agric Eng Vet Sci 35:67–71
Google Scholar
Lokonon BOK, Egbendewe AYG, Coulibaly N, Atewamba C (2019) The potential impact of climate change on agriculture in West Africa: a bio-economic modeling approach. Clim Chang Econ 10:30. https://doi.org/10.1142/s2010007819500155
Article
Google Scholar
Mahmood N, Ahmad B, Hassan S, Bakhsh K (2012) Impact of temperature ADN precipitation on rice productivity in rice–wheat cropping system of Punjab province. J Anim Plant Sci 22:993–997
Google Scholar
Mahmood N, Arshad M, Kächele H, Ma H, Ullah A, Müller K (2019) Wheat yield response to input and socioeconomic factors under changing climate: evidence from rainfed environments of Pakistan. Sci Total Environ 688:1275–1285
CAS
Article
Google Scholar
Mahmood N, Arshad M, Kächele H, Ullah A, Müller K (2020a) Economic efficiency of rainfed wheat farmers under changing climate: evidence from Pakistan. Environ Sci Pollut Res 27:34453–34467
Article
Google Scholar
Mahmood N, Arshad M, Kaechele H, Shahzad MF, Ullah A, Mueller K (2020b) Fatalism, climate resiliency training and farmers’ adaptation responses: implications for sustainable rainfed-wheat production in Pakistan. Sustainability 12:1650
Article
Google Scholar
Mandal S, Satpati LN, Choudhury BU, Sadhu S (2018) Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India. Theor Appl Climatol 132:451–464. https://doi.org/10.1007/s00704-017-2098-5
Article
Google Scholar
Masud MM, Azam MN, Mohiuddin M, Banna H, Akhtar R, Alam AF, Begum H (2017) Adaptation barriers and strategies towards climate change: challenges in the agricultural sector. J Clean Prod 156:698–706
Article
Google Scholar
Moser SC, Luers AL (2008) Managing climate risks in California: the need to engage resource managers for successful adaptation to change. Clim Chang 87:S309–S322. https://doi.org/10.1007/s10584-007-9384-7
Article
Google Scholar
Nawrotzki RJ, Hunter LM, Runfola DM, Riosmena F (2015) Climate change as a migration driver from rural and urban Mexico. Environ Res Lett 10:114023
Article
Google Scholar
Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007—impacts, adaptation and vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC vol 4. Cambridge University Press
Patnaik UNK (2009) Vulnerability and climate change: an analysis of the eastern coastal districts of India. MPRA Paper No. 22062. Available at http://mpra.ub.uni-muenchen.de/22062/. Accessed 12 Apr 2020
Sendhil R, Jha A, Kumar A, Singh S (2018) Extent of vulnerability in wheat producing agro-ecologies of India: tracking from indicators of cross-section and multi-dimension data. Ecol Indic 89:771–780. https://doi.org/10.1016/j.ecolind.2018.02.053
Article
Google Scholar
Shah AA, Gong Z, Ali M, Jamshed A, Naqvi SAA, Naz S (2020a) Measuring education sector resilience in the face of flood disasters in Pakistan: an index-based approach Environmental Science and Pollution Research:1–17. https://doi.org/10.1007/s11356-020-10308-y
Shah AA, Gong Z, Pal I, Sun R, Ullah W, Wani GF (2020b) Disaster risk management insight on school emergency preparedness—a case study of Khyber Pakhtunkhwa, Pakistan. Int J Disaster Risk Reduct 101805
Shah AA, Khan NA, Nabi N, Pervez AK, Koivogui SK, Ado AM (2018a) Flooding in Khyber Pakhtunkhwa: gathering lessons learned and perceptions at the community level of the NGOs extended shelter intervention program. Int NGO J 13:7–16
Article
Google Scholar
Shah AA, Shaw R, Ye J, Abid M, Amir SM, Pervez AK, Naz S (2019) Current capacities, preparedness and needs of local institutions in dealing with disaster risk reduction in Khyber Pakhtunkhwa, Pakistan. Int J Disaster Risk Reduct 34:165–172
Article
Google Scholar
Shah AA, Ye JZ, Abid M, Khan J, Amir SM (2018b) Flood hazards: household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat Hazards 93:147–165. https://doi.org/10.1007/s11069-018-3293-0
Article
Google Scholar
Shortridge J (2019) Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim Chang 157:429–444. https://doi.org/10.1007/s10584-019-02555-x
Article
Google Scholar
Siddiqui R, Samad G, Nasir M, Jalil HH (2012) The impact of climate change on major agricultural crops: evidence from Punjab, Pakistan. Pak Dev Rev 51:4 Part II (Winter 2012) 51:4:261–274
Soares MB, Alexandre SG, Ruth MD (2012) Conceptual elements of climate change vulnerability assessments: a review International Journal of Climate Change Strategies and Management 4:6–35
Vincent K (2007) Uncertainty in adaptive capacity and the importance of scale. Glob Environ Chang 17:12–24
Article
Google Scholar
Watto MA, Mugera AW (2016) Irrigation water demand and implications for groundwater pricing in Pakistan. Water Policy 18:565–585
Article
Google Scholar
Watto MA, Mugera AW, Kingwell R, Saqab MM (2018) Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan. Hydrogeol J 26:2411–2425
CAS
Article
Google Scholar
Zamasiya B, Nyikahadzoi K, Mukamuri BB (2017) Factors influencing smallholder farmers’ behavioural intention towards adaptation to climate change in transitional climatic zones: a case study of Hwedza District in Zimbabwe. J Environ Manag 198:233–239
Article
Google Scholar