Skip to main content

Advertisement

Log in

Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Urbanization models that do not comply with the planning criteria are affecting human lives. In urban areas, street trees have positive contributions to the ecosystem and human thermal comfort. In this study, the thermal comfort of the main streets that connect people to each other and provide access and transportation has been thermally explored. Cumhuriyet Street, which is one of the vibrant streets in Erzurum, was selected as a case study scenario in the winter and summer periods in 2018 by using the ENVI-met V. 4.4.2 winter model. A different green scenario is proposed, and the best thermal comfort scenario in both seasons is determined. The results show that, in the summer period, the air temperature of the greener street scenario is about 1.0 °C cooler than the existing condition and about 2.0 °C warmer in the winter period. Physiological equivalent temperature (PET) value was better in narrow canyon streets in winter months, but in wide canyon streets in summer months. The green scenarios of wide canyon streets positively affect the outdoor thermal comfort in both seasons. These results clearly imply that green streets are an appropriate strategy for city streets that suffer from discomfort levels in cold winter and hot summer periods. It has been concluded that it is possible to increase thermal comfort through improvement in the open space in street and more suitable plant preferences for livable urbanization. Planning streets in a new city characterized by summer and winter seasons should take into consideration an accurate decision for providing a thermal comfort level and healthy urbanization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alavipanah S, Wegmann M, Qureshi S, Weng Q, Koellner T (2015) The role of vegetation in mitigating urban land surface temperatures: a case study of Munich, Germany during the warm season. Sustainability 7(4):4689–4706

    Article  Google Scholar 

  • Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 43(4):480–493

    Article  Google Scholar 

  • Ali-Toudert F, Mayer H (2007) Thermal comfort in an east–west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theor Appl Climatol 87(1–4):223–237

    Article  Google Scholar 

  • Andrade H, Alcoforado MJ (2008) Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor Appl Climatol 92(3–4):225–237

    Article  Google Scholar 

  • MGM (2018) Turkish State Meteorological Service (MGM) shared their data. https://www.mgm.gov.tr/

  • Anyanwu EC, Kanu I (2006) The role of urban forest in the protection of human environmental health in geographically-prone unpredictable hostile weather conditions. Int J Environ Sci Technol 3(2):197–201

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Asgarzadeh M, Lusk A, Koga T, Hirate K (2012) Measuring oppressiveness of streetscapes. Landsc Urban Plan 107(1):1–11

    Article  Google Scholar 

  • Bottillo S, Vollaro ADL, Galli G, Vallati A (2014) Fluid dynamic and heat transfer parameters in an urban canyon. Sol Energy 99:1–10

    Article  Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97(3):147–155

    Article  Google Scholar 

  • Bruse M (2017) ENVI-met 4: a microscale urban climate model. http://www.envi-met.info. Accessed Feb 2017

  • Cao A, Li Q, Meng Q (2015) Effects of orientation of urban roads on the local thermal environment in Guangzhou City. Procedia Eng 121:2075–2082

    Article  Google Scholar 

  • Chan SY, Chau CK (2019) Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Build Environ 164:106364

    Article  Google Scholar 

  • Chen L, Ng E, An X, Ren C, Lee M, Wang U, He Z (2012) Sky view factor analysis of street canyons and its implications for daytime air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. Int J Climatol 32(1):121–136

    Article  CAS  Google Scholar 

  • Chen T, Hui ECM, Lang W, Tao L (2016) People, recreational facility and physical activity: new-type urbanization planning for the healthy communities in China. Habitat International 58:12–22

    Article  Google Scholar 

  • Chokhachian A, Perini K, Giulini S, Auer T (2020) Urban performance and density: generative study on interdependencies of urban form and environmental measures. Sustain Cities Soc 53:101952. https://doi.org/10.1016/j.scs.2019.101952

    Article  Google Scholar 

  • Delso J, Martín B, Ortega E, Otero I (2017) A model for assessing pedestrian corridors. Application to Vitoria-Gasteiz City (Spain). Sustainability 9(3):434

    Article  Google Scholar 

  • Djekic J, Djukic A, Vukmirovic M, Djekic P, Brankovic MD (2018) Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy Build 159:474–485

    Article  Google Scholar 

  • Dumbaugh E, Gattis JL (2005) Safe streets, livable streets. J Am Plan Assoc 71(3):283–300

    Article  Google Scholar 

  • Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27(14):1995–2004

    Article  Google Scholar 

  • Falasca S, Ciancio V, Salata F, Galosi L, Rosso C (2019) High albedo materials to counteract heat waves in cities: an assessment of meteorology, buildings energy needs and pedestrian thermal comfort. Build Environ 163:106242. https://doi.org/10.1016/j.buildenv.2019.106242

    Article  Google Scholar 

  • Fan C, Myint SW, Zheng B (2015) Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temperatures. Prog Phys Geogr 39(2):199–219

    Article  Google Scholar 

  • Fanger PO (1972) Thermal comfort, analysis and application in environmental engineering. McGrew-Hill, New York

    Google Scholar 

  • Flores A, Pickett ST, Zipperer WC, Pouyat RV, Pirani R (1998) Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc Urban Plan 39(4):295–308

    Article  Google Scholar 

  • Fu B, Yu D, Zhang Y (2019) The livable urban landscape: GIS and remote sensing extracted land use assessment for urban livability in Changchun Proper, China. Land Use Policy 87:104048

    Article  Google Scholar 

  • Girgis N, Elariane S, Elrazik MA (2016) Evaluation of heat exhausts impacts on pedestrian thermal comfort. Sustain Cities Soc 27:152–159

    Article  Google Scholar 

  • Gómez F, Valcuende M, Matzarakis A, Cárcel J (2018) Design of natural elements in open spaces of cities with a Mediterranean climate, conditions for comfort and urban ecology. Environ Sci Pollut Res 25:26643–26652

    Article  Google Scholar 

  • Gromke C, Blocken B (2015) Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: traffic pollutant concentrations at pedestrian level. Environ Pollut 196:176–184

    Article  CAS  Google Scholar 

  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Irmak MA, Yilmaz S, Mutlu E, Yilmaz H (2018) Assessment of the effects of different tree species on urban microclimate. Environ Sci Pollut Res 25(16):15802–15822. https://doi.org/10.1007/s11356-018-1697-8

    Article  Google Scholar 

  • Josephine AA, Chbani A, Faljoun Z, Millet M (2019) The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—a review. Environ Sci Pollut Res 26:9391–9408

    Article  CAS  Google Scholar 

  • Kashef M (2016) Urban livability across disciplinary and professional boundaries. Front Archit Res 5(2):239–253

    Article  Google Scholar 

  • Kazemi F, Abolhassani L, Rahmati EA, Sayyad-Amin P (2018) Strategic planning for cultivation of fruit trees and shrubs in urban landscapes using the SWOT method: a case study for the city of Mashhad, Iran. Land Use Policy 70:1–9

    Article  Google Scholar 

  • Klemm W, Heusinkveld BG, Lenzholzer S, Jacobs MH, Van Hove B (2015) Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build Environ 83:120–128

    Article  Google Scholar 

  • Konarska J, Uddling J, Holmer B, Lutz M, Lindberg F, Pleijel H, Thorsson S (2016) Transpiration of urban trees and its cooling effect in a high latitude city. Int J Biometeorol 60(1):159–172

    Article  Google Scholar 

  • Köppen W (1918). Klassifikation der Klima nach Temperatur, Niederschlag und Jahreslauf. Petermanns Mitt, 64.

  • Lerman Y, Rofè Y, Omer I (2014) Using space syntax to model pedestrian movement in urban transportation planning. Geogr Anal 46(4):392–410

    Article  Google Scholar 

  • Lin P, Lau SSY, Qin H, Gou Z (2017) Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landsc Urban Plan 168:48–60

    Article  Google Scholar 

  • Lindén J (2011) Nocturnal cool island in the Sahelian City of Ouagadougou, Burkina Faso. Int J Climatol 31(4):605–620

    Article  Google Scholar 

  • Liu Y, Fang F, Li Y (2014) Key issues of land use in China and implications for policy making. Land Use Policy 40:6–12

    Article  CAS  Google Scholar 

  • Ma X, Wang M, Zhao J, Zhang L, Liu W (2020) Performance of different urban design parameters in improving outdoor thermal comfort and health in a pedestrianized zone. Int J Environ Res Public Health 17(7):2258

    Article  Google Scholar 

  • Maharoof N, Emmanuel R, Thomson C (2020) Compatibility of local climate zone parameters for climate sensitive street design: influence of openness and surface properties on local climate. Urban Clim 33:100642

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84

    Article  CAS  Google Scholar 

  • Mayer H, Kuppe S, Holst J, Imbery F, Matzarakis A (2009) Human thermal comfort below the canopy of street trees on a typical Central European summer day. Ber Meteor Inst Univ Freiburg 18:211–219

    Google Scholar 

  • Matzarakis A, Matuschek O (2011) Sky view factor as a parameter in applied climatology–rapid estimation by the SkyHelios model. Meteorol Z 20(1):39–45

    Article  Google Scholar 

  • Middel A, Brazel AJ, Gober P, Myint SW, Chang H, Duh JD (2012) Land cover, climate, and the summer surface energy balance in Phoenix, AZ, and Portland, OR. Int J Climatol 32(13):2020–2032

    Article  Google Scholar 

  • Mochida A, Lun IY (2008) Prediction of wind environment and thermal comfort at pedestrian level in urban area. J Wind Eng Ind Aerodyn 96(10–11):1498–1527

    Article  Google Scholar 

  • Morakinyo TE, Kong L, Lau KKL, Yuan C, Ng E (2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ 115:1–17

    Article  Google Scholar 

  • Mutlu, E., Yilmaz S., Yilmaz H., Mutlu B.E. (2018). Analysis of urban settlement unit by ENVI-met according to different aspects in cold regions. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), oral presentation, 14-15 May 2018, Singapore

  • Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energy Build 55:51–65

    Article  Google Scholar 

  • Nordh H, Østby K (2013) Pocket parks for people–a study of park design and use. Urban For Urban Green 12(1):12–17

    Article  Google Scholar 

  • Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NS (2015) Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113

    Article  Google Scholar 

  • Ozhanci E, Yilmaz H, Yilmaz S (2014) Safety perception of different plant designs in pedestrian and car streets. Urban Des Int 19(4):303–310

    Article  Google Scholar 

  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi 35:17–27

    Google Scholar 

  • Park M, Hagishima A, Tanimoto J, Narita KI (2012) Effect of urban vegetation on outdoor thermal environment: field measurement at a scale model site. Build Environ 56:38–46

    Article  Google Scholar 

  • Pearlmutter D, Berliner P, Shaviv E (2007) Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build Environ 42(6):2396–2409

    Article  Google Scholar 

  • Pioppi B, Pigliautile I, Piselli C, Pisello AL (2020) Cultural heritage microclimate change: human-centric approach to experimentally investigate intra-urban overheating and numerically assess foreseen future scenarios impact. Sci Total Environ 703:134448. https://doi.org/10.1016/j.scitotenv.2019.134448

    Article  CAS  Google Scholar 

  • Potchter O, Cohen P, Lin TP, Matzarakis A (2018) Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Sci Total Environ 631:390–406

    Article  CAS  Google Scholar 

  • Qaid A, Lamit HB, Ossen DR, Shahminan RNR (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build 133:577–559

    Article  Google Scholar 

  • Qaid A, Ossen DR (2015) Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int J Biometeorol 59(6):657–677

    Article  Google Scholar 

  • Rosso F, Golasi I, Castaldo VL, Piselli C, Pisello AL, Salata F, de Lieto Vollaro A (2018) On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew Energy 118:825–839

    Article  Google Scholar 

  • Salata F, Golasi I, de Lieto Vollaro R, de Lieto Vollaro A (2016) Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain Cities Soc 26:318–343

    Article  Google Scholar 

  • Salata F, Golasi I, Petitti D, de Lieto Vollaro E, Coppi M, de Lieto Vollaro A (2017) Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain Cities Soc 30:79–96

    Article  Google Scholar 

  • Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31(10):1498–1506

    Article  Google Scholar 

  • Shashua-Bar L, Tsiros IX, Hoffman M (2012) Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build Environ 57:110–119

    Article  Google Scholar 

  • Simon H, Lindén J, Hoffmann D, Braun P, Bruse M, Esper J (2018) Modeling transpiration and leaf temperature of urban trees–a case study evaluating the microclimate model ENVI-met against measurement data. Landsc Urban Plan 174:33–40

    Article  Google Scholar 

  • Smith P, Henríquez C (2019) Perception of thermal comfort in outdoor public spaces in the medium-sized city of Chillán, Chile, during a warm summer. Urban Clim 30:100525

    Article  Google Scholar 

  • Srivanit M, Hokao K (2013) Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 66:158–172

    Article  Google Scholar 

  • Svensson MK, Thorsson S, Lindqvist S (2003) A geographical information system model for creating bioclimatic maps–examples from a high, mid-latitude city. Int J Biometeorol 47(2):102–112

    Article  Google Scholar 

  • Tan Z, Lau KKL, Ng E (2016) Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build 114:265–274

    Article  Google Scholar 

  • Tsoka S, Tsikaloudaki A, Theodosiou T (2018) Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustain Cities Soc 43:55–76

    Article  Google Scholar 

  • Tsoka S, Tsikaloudaki K, Theodosiou T (2017) Urban space’s morphology and microclimatic analysis: a study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy Build 156:96–108

    Article  Google Scholar 

  • Van Craenendonck S, Lauriks L, Vuye C, Kampen J (2018) A review of human thermal comfort experiments in controlled and semi-controlled environments. Renew Sust Energ Rev 82:3365–3378

    Article  Google Scholar 

  • Xie Y, Huang T, Li J, Liu J, Niu J, Mak CM, Lin Z (2018) Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: sensitivity to speed and solar radiation. Build Environ 132:45–56

    Article  Google Scholar 

  • Yang Y, Zhou D, Gao W, Zhang Z, Chen W, Peng W (2018) Simulation on the impacts of the street tree pattern on built summer thermal comfort in cold region of China. Sustain Cities Soc 37:563–580

    Article  CAS  Google Scholar 

  • Yilmaz, S., Irmak M.A., Mutlu B.E., Yilmaz Z., 2019. Analysis of the effect of different exterior front claddings on thermal comfort in sustainable environment by ENVI-met: Atatürk University Campus. Oral presentation ID-A-USP-033, International Civil Engineering and Architecture Conference, ICEARC 19, Trabzon/Turkey

  • Yilmaz H, Yilmaz S, Yavaş M, Mutlu E, Koç A (2016) Climate-sensitive pavement modelling for pedestrian ways. 4th International Conference on Countermeasures to Urban Heat Island (UHI) 2016. Procedia Eng 169:408–415

    Article  Google Scholar 

  • Yilmaz S, Mutlu E, Yilmaz H (2018a) Alternative scenarios for ecological urbanizations using ENVI-met model. Environ Sci Pollut Res 25(26):26307–26321

    Article  Google Scholar 

  • Yilmaz S, Mutlu E, Yilmaz H (2018b) Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. https://doi.org/10.17660/ActaHortic.2018.1215.12

  • Zhang L, Zhan Q, Lan Y (2018) Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: a case study in Wuhan residential quarters. Build Environ 130:27–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevgi Yilmaz.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, S., Mutlu, B.E., Aksu, A. et al. Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environ Sci Pollut Res 28, 3672–3693 (2021). https://doi.org/10.1007/s11356-020-10555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10555-z

Keywords

Navigation