Skip to main content

Pyriproxyfen does not cause microcephaly or malformations in a preclinical mammalian model

Abstract

Pyriproxyfen is used in Brazil to combat epidemics of Dengue Fever, Chikungunya Fever, and Zika virus. This study assessed the effects of pyriproxyfen on reproductive performance, embryo-fetal development, head measurements, and DNA integrity in a preclinical model. Thirty pregnant mice were divided into three groups (n = 10): control (drinking water—0.1 ml/10 g (body weight—b.w., gavage) and treated with pyriproxyfen 0.0002 mg/kg and 0.0021 mg/kg (b.w., gavage) during the gestational period. Analysis of biometric, reproductive performance and embryo-fetal development parameters related to control presented no significant differences, suggesting no maternal or embryo-fetal toxicity. Head measurements showed no differences except an increase in anterior/posterior measurement and glabella/external occipital protuberance. Analysis of DNA integrity showed an increase in micronucleus only at 72 h for the lowest dose group. Thus, we infer that pyriproxyfen is not related to the occurrence of microcephaly, nor does it alter reproductive performance, embryo-fetal development or DNA integrity.

This is a preview of subscription content, access via your institution.

References

  1. Albuquerque MFPM, Souza WV, Mendes AD, Lyra TM, Ximenes RA, Araújo TV, Braga C, Miranda-Filho DB, Martelli CM, Rodrigues LC (2016) Pyriproxyfen and the microcephaly epidemic in Brazil - an ecological approach to explore the hypothesis of their association. Mem Inst Oswaldo Cruz 111(12):774–776. https://doi.org/10.1590/0074-02760160291

    CAS  Article  Google Scholar 

  2. Barrow MV, Taylor WJ (1969) A rapid method for detecting malformation in rat fetuse. J Morphol 127(3):291–305

    CAS  Article  Google Scholar 

  3. Brasil - Orientações técnicas para utilização do larvicida pyriproxyfen (0,5G) no controle de Aedes aegypti (2014). Disponível em: ˂ http://portalarquivos.saude.gov.br/images/pdf/2014/julho/15/Instru%2D%2D%2D%2Des-para-uso-de-pyriproxifen-maio-2014.pdf >Acess 10/01/2019

  4. Damasceno DC, Cristina P, Francisco JR, Volpato GT, Consonni M, Rudge MVC, Kempinas WG (2008) Anomalias congênitas: estudos experimentais. Editora Média, Belo Horizonte

    Google Scholar 

  5. David N, Mauro MO, Gonçalves CA, Pesarini JR, Strapasson RL, Kassuya CA, Stefanello ME, Cunha-Laura AL, Monreal AC, Oliveira RJ (2014) Gochnatia polymorpha ssp. floccosa: bioprospecting of an anti-inflammatory phytotherapy for use during pregnancy. J Ethnopharmacol 154(2):370–379. https://doi.org/10.1016/j.jep.2014.04.005

    Article  Google Scholar 

  6. Dzieciolowska S, Larroque AL, Kranjec EA, Drapeau P, Samarut E (2017) The larvicide pyriproxyfen blamed during the Zika virus outbreak does not cause microcephaly in zebrafish embryos. Sci Rep 7:40067. https://doi.org/10.1038/srep40067

    CAS  Article  Google Scholar 

  7. Gonçalves CA, Siqueira JM, Carollo CA, Mauro MO, de Davi N, Cunha-Laura AL, Monreal AC, Castro AH, Fernandes L, Chagas RR, Auharek SA, Oliveira RJ (2013) Gestational exposure to Byrsonima verbascifolia: teratogenicity, mutagenicity and immunomodulation evaluation in female Swiss mice. J Ethnopharmacol 150(3):843–850. https://doi.org/10.1016/j.jep.2013.09.012

    Article  Google Scholar 

  8. Gonçalves CA, Silva NL, Mauro MO, David N, Cunha-Laura AL, Auharek SA, Monreal AC, Vieira MC, Silva DB, Santos FJ, Siqueira JM, Oliveira RJ (2014) Evaluation of mutagenic, teratogenic, and immunomodulatory effects of Annona nutans hydromethanolic fraction on pregnant mice. Genet Mol Res 13(2):4392–4405. https://doi.org/10.4238/2014

    Article  Google Scholar 

  9. Hanseman JK, Hogan MD (1995) Selection of the experimental unit in teratology studies. Teratology. 12(2):165–172

    Article  Google Scholar 

  10. Harris SB, Hardisty JF, Hayes AW, Weber K (2020) Developmental and reproductive toxicity studies of BIA10-2474. Regul Toxicol Pharmacol 111:104543. https://doi.org/10.1016/j.yrtph.2019.104543

    CAS  Article  Google Scholar 

  11. Hayashi M, Morita T, Kodama Y, Sofundi T, Ishidate Junior M (1990) The micronucleus assay with mouse peripheral blood reticulocytes using acridine Orange-coated slides. Mutat Res 245(4):245–249

    CAS  Article  Google Scholar 

  12. Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145. https://doi.org/10.1016/j.aquatox.2018.01.010

    CAS  Article  Google Scholar 

  13. Manson JM, Kang YJ (1994) Test methods for assessing female reproductive and developmental toxicology. In: Hayes AW (ed) Principles and methods of toxicology. Raven Press, New York

    Google Scholar 

  14. Manson JM, Zenich H, Costlowr D (1982) Teratology test methods for laboratory animal. In: Hayes AW (ed) Principles and methods of toxicology. Raven Press, New York

  15. Montenegro MA, Guerreiro MM (s.d.). Protocolos em neurologia infantil. Universidade Estadual de Campinas – UNICAMP

  16. Moreira CQ, Faria MJSS, Baroneza JE, Oliveira RJ, Moreira EG (2005) Developmental exposure to fenproporex: reproductive and morphological evaluation. Hum Exp Toxicol 24(8):397–402

    CAS  Article  Google Scholar 

  17. OECD (2001) - Guidelines for testing of chemicals section 4: health effects. Test no. 414: prenatal development toxicity study

  18. OECD (2009) - Guidelines for testing of chemicals. Draft proposal for an extended one-generation reproductive toxicity study. No.28

  19. OECD – (2014) Guideline for testing of chemicals. Mammalian erythrocyte Test. Teste n° 474 de 26/09/2014

  20. OECD – (2015) Guideline for testing of chemicals. Reproduction/Developmental Toxicity Screening Test. Teste n° 421 de 28/07/2015

  21. Oliveira RJ, Salles MJ, da Silva AF, Kanno TY, Lourenço AC, Freiria GA, Matiazi HJ, Ribeiro LR, Mantovani MS (2009) Effects of the polysaccharide ß-glucan on clastogenicity and teratogenicity caused by acute exposure to cyclophosphamide in mice. Regul Toxicol Pharmacol 53(3):164–173. https://doi.org/10.1016/j.yrtph.2008.12.007

    CAS  Article  Google Scholar 

  22. Oliveira RJ, Mantovani MS, Pesarini JR, Mauro MO, da Silva AF, Souza TR, Ribeiro LR (2015) 6-Dimethylaminopurine and cyclohexamide are mutagenic and alter reproductive performance and intrauterine development in vivo. Genet Mol Res 14(1):834–849. https://doi.org/10.4238/2015

    Article  Google Scholar 

  23. Parens R, Nijhout HF, Morales A, Xavier Costa F, Bar-Yam Y. (2017) A possible link between pyriproxyfen and microcephaly. PLoS Curr. 9. https://doi.org/10.1371/currents.outbreaks.5afb0bfb8cf31d9a4baba7b19b4edbac

  24. REDUAS (2016) Universidade Vermelha de Ambiente e Saúde. RELATÓRIO dos médicos da cidade pulverizada por culturas sobre dengue-zika, microcefalia e pulverização maciça com venenos químicos, 2016. http://reduas.com.ar/report-from-physicians-in-the-crop-sprayed-town-regarding -diga-zika-microcefalia e pulverização maciça com venenos químicos. Acess 14/02/2020)

  25. Saegusa T (1988) SUMILARV - Study of S-31183 by oral administration during the period of fetal organogenesis in rats

  26. Salewski E (1964) Färbemethoden zum makroskopischen nachweis von implantationsstellen am uterus der ratte Naunym-Schmiedeberg. Archiv Exp Pathol Pharmkol 247:367

    Article  Google Scholar 

  27. Staples RE, Schenell VL (1964) Refinements in rapid clearing technic in the KOH-alizarin red method for fetal bone. Stain Technol 39:61–63

    CAS  Google Scholar 

  28. Sumitomo (n.d) (not publicly released; as public record obtained free by request from California Department of Pesticide Regulation and from Sumitomo)

  29. Tang BL (2016) Zika virus as a causative agent for primary microencephaly: the evidence so far. Arch Microbiol 198(7):595–601. https://doi.org/10.1007/s00203-016-1268-7

    CAS  Article  Google Scholar 

  30. Taylor P (1986) Pratical Teratology. Academic Press, New York

    Google Scholar 

  31. Usta A, Usta CS, Yildiz A, Ozcaglayan R, Dalkiran ES, Savkli A, Taskiran M (2017) Frequency of fetal macrosomia and the associated risk factors in pregnancies without gestational diabetes mellitus. Pan Afr Med J 2:26–62. https://doi.org/10.11604/pamj.2017.26.62.11440

    Article  Google Scholar 

  32. Vani JM, Monreal MTFD, Auharek SA, Cunha-Laura AL, de Arruda EJ, Lima AR, da Silva CM, Antoniolli-Silva ACMB, de Lima DP, Beatriz A, Oliveira RJ (2018a) The mixture of cashew nut shell liquid and castor oil results in an efficient larvicide against Aedes aegypti that does not alter embryo-fetal development, reproductive performance or DNA integrity. PLoS One 13(3):e0193509. https://doi.org/10.1371/journal.pone.0193509a

    Article  Google Scholar 

  33. Vani JM, Schweich LC, Oliveira KRW, Auharek SA, Cunha-Laura AL, Antoniolli-Silva ACMB, Nazario CED, Oliveira RJ (2018b). Evaluation of the effects of the larvicides temephos on reproductive performance, embryofetal development and DNA integrity of pyriproxyfen WHO - Recommended Classification of Pesticides by Hazard. Guidelines to classification 2000-2002. Disponível em: http://www.who.int/ipcs/publications/en/pesticides_hazard.pdf. Acess 10/01/2019

  34. Vieira-Santos, VS, Caixeta ES, Campos Júnior EOD, Pereira BB (2017) Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: redefining the use of pyriproxyfen. J Toxicol Environ Health A 80(3):155–160

  35. Vitolo MR (2008) Especificidades dos Nutrientes. Nutrição da gestação ao envelhecimento. Editora Rubio, Rio de Janeiro

  36. Wilson JG (1965) Methods for administering agentes and detecting malformations in experimental animals. In: Wilson JG, Waekany J (eds) Teratology: principles snd Thecniques. The University of Chicago Press, Chicago

    Google Scholar 

  37. World Health Organization (2020) The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World HealthOrganization

Download references

Funding

Financial support was provided by the Brazilian Foundation: FUNDECT MS, CNPq, and CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Juliano Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vani, J.M., de Carvalho Schweich-Adami, L., Auharek, S.A. et al. Pyriproxyfen does not cause microcephaly or malformations in a preclinical mammalian model. Environ Sci Pollut Res 28, 4585–4593 (2021). https://doi.org/10.1007/s11356-020-10517-5

Download citation

Keywords

  • Larvicide
  • Reproductive performance
  • Embryo-fetal development
  • Teratogenesis
  • Genotoxicity