Skip to main content
Log in

Effects of elevated nitrogen on the growth and geosmin productivity of Dolichospermum smithii

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Geosmin is one of the most common earthy-musty odor compounds, which is mainly produced by cyanobacteria in surface water. Nitrogen (N) is an important factor affecting the growth of cyanobacteria and its secondary metabolites production due to the eutrophication. In this study, we compared the effects of elevated N on the growth and geosmin productivity of Dolichospermum smithii NIES-824 (synonym Anabaena smithii NIES-824), aiming to better understand the mechanisms involved and give an important and fundamental knowledge to solve off-flavor problem. Results show that elevated N concentration promoted more chlorophyll a (Chl-a) production, whereas the geosmin synthesis decreased, revealing a possible competitive correlation between the Chl-a concentration and geosmin production of D. smithii NIES-824. The majority of geosmin (> 90%) was retained intracellularly during the 28 days of cultivation. The qRT-PCR analysis demonstrates that the expression level of the geosmin synthase gene (geoA) was constitutive and decreased at the higher N concentration during the exponential growth phase of cyanobacterial cells. Furthermore, the decrease of geoA expression during the decline phase suggested that geoA transcription was closely related to cell activity and isoprenoid productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5(2):167–190

    CAS  Google Scholar 

  • Alghanmi HA, Fo’ad MA, Al-Taee MM (2018) Effect of light and temperature on new cyanobacteria producers for geosmin and 2-methylisoborneol. J Appl Phycol 30(1):319–328

    CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC

    Google Scholar 

  • Blevins WT, Schrader KK, Saadoun I (1995) Comparative physiology of geosmin production by Streptomyces halstedii and Anabaena sp. Water Sci Technol 31(11):127–133

    CAS  Google Scholar 

  • Cai F, Yu G, Zhang K, Chen Y, Li Q, Yang Y, Xie J, Wang Y, Li R (2017) Geosmin production and polyphasic characterization of Oscillatoria limosa Agardh ex Gomont isolated from the open canal of a large drinking water system in Tianjin City, China. Harmful Algae 69:28–37

    CAS  Google Scholar 

  • Cook D, Newcombe G, Sztajnbok P (2001) The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters. Water Res 35(5):1325–1333

    CAS  Google Scholar 

  • Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C (2012) Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS One 7(6):e38757

    CAS  Google Scholar 

  • Dzialowski AR, Smith VH, Huggins DG, deNoyelles F, Lim NC, Baker DS, Beury JH (2009) Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Res 43(11):2829–2840

    CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Google Scholar 

  • Frank D, Poole S, Kirchhoff S, Forde C (2009) Investigation of sensory and volatile characteristics of farmed and wild barramundi (Lates calcarifer) using gas chromatography−olfactometry mass spectrometry and descriptive sensory analysis. J Agric Food Chem 57(21):10302–10312

    CAS  Google Scholar 

  • Giglio S, Jiang J, Saint CP, Cane DE, Monis PT (2008) Isolation and characterization of the gene associated with geosmin production in cyanobacteria. Environ Sci Technol 42(21):8027–8032

    CAS  Google Scholar 

  • Giglio S, Saint CP, Monis PT (2011) Expression of the geosmin synthase gene in the cyanobacterium Anabaena circinalis AWQC3181. J Phycol 47(6):1338–1343

    CAS  Google Scholar 

  • Ho L, Hoefel D, Bock F, Saint CP, Newcombe G (2007) Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 66(11):2210–2218

    CAS  Google Scholar 

  • Hsieh ST, Lin TF, Wang GS (2010) Biodegradation of MIB and geosmin with slow sand filters. J Environ Sci Heal A 45(8):951–957

    CAS  Google Scholar 

  • Japan Water Works Association (2011) Standard methods for the examination of water. Japan Water Works Association, Tokyo, Japan (in Japanese)

    Google Scholar 

  • Jiang J, Cane DE (2008) Geosmin biosynthesis. Mechanism of the fragmentation−rearrangement in the conversion of germacradienol to geosmin. J Am Chem Soc 130(2):428–429

    CAS  Google Scholar 

  • Jiang J, He X, Cane DE (2006) Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J Am Chem Soc 128(25):8128–8129

    CAS  Google Scholar 

  • Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73(14):4395–4406

    Google Scholar 

  • Kakimoto M, Ishikawa T, Miyagi A, Saito K, Miyazaki M, Asaeda T, Yamaguchi M, Uchiyama H, Kawai-Yamada M (2014) Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. J Plant Physiol 171(3-4):292–300

    CAS  Google Scholar 

  • Kutovaya OA, Watson SB (2014) Development and application of a molecular assay to detect and monitor geosmin-producing cyanobacteria and actinomycetes in the Great Lakes. J Great Lakes Res 40(2):404–414

    CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97(24):13172–13177

    CAS  Google Scholar 

  • Lee J, Rai PK, Jeon YJ, Kim KH, Kwon EE (2017) The role of algae and cyanobacteria in the production and release of odorants in water. Environ Pollut 227:252–262

    CAS  Google Scholar 

  • Li Z, Yu J, Yang M, Zhang J, Burch MD, Han W (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9(5):481–488

    CAS  Google Scholar 

  • Naes H, Post AF (1988) Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. Arch Microbiol 150(4):333–337

    CAS  Google Scholar 

  • Olsen BK, Chislock MF, Wilson AE (2016) Eutrophication mediates a common off-flavor compound, 2-methylisoborneol, in a drinking water reservoir. Water Res 92:228–234

    CAS  Google Scholar 

  • Pattanaik B, Lindberg P (2015) Terpenoids and their biosynthesis in cyanobacteria. Life 5(1):269–293

    CAS  Google Scholar 

  • Perkins RG, Slavin EI, Andrade TMC, Blenkinsopp C, Pearson P, Froggatt T, Godwin G, Parslow J, Hurley S, Luckwell R, Wain DJ (2019) Managing taste and odour metabolite production in drinking water reservoirs: the importance of ammonium as a key nutrient trigger. J Environ Manag 244:276–284

    CAS  Google Scholar 

  • Proteau PJ (1998) Biosynthesis of phytol in the cyanobacterium Synechocystis sp. UTEX 2470: utilization of the non-mevalonate pathway. J Nat Prod 61(6):841–843

    CAS  Google Scholar 

  • Rasch D, Kubinger KD, Moder K (2011) The two-sample t test: pre-testing its assumptions does not play off. Stat Pap 52:219–231

    Google Scholar 

  • Robin J, Cravedi JP, Hillenweck A, Deshayes C, Vallod D (2006) Off flavor characterization and origin in French trout farming. Aquaculture 260(1-4):128–138

    CAS  Google Scholar 

  • Saadoun IM, Schrader KK, Blevins WT (2001) Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Res 35(5):1209–1218

    CAS  Google Scholar 

  • Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280(1-4):5–20

    CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Google Scholar 

  • Srinivasan R, Sorial GA (2011) Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review. J Environ Sci 23(1):1–13

    CAS  Google Scholar 

  • Suwanpakdee S, Gutierrez R, Pithakpol S, Jampeetong A, Pathom-aree W, Nomura N, Itayama N, Whangchai N (2016) Earthy-musty odor and off-flavour taints in Phayao Lake, Thailand. Chiang Mai J Sci 43(1):22–31

    CAS  Google Scholar 

  • Tsao HW, Michinaka A, Yen HK, Giglio S, Hobson P, Monis P, Lin TF (2014) Monitoring of geosmin producing Anabaena circinalis using quantitative PCR. Water Res 49:416–425

    CAS  Google Scholar 

  • Wang Z, Li R (2015) Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. and geosmin-producing Anabaena ucrainica (cyanobacteria). Biochem Syst Ecol 58:219–226

    CAS  Google Scholar 

  • Wang Z, Xu Y, Shao J, Wang J, Li R (2011) Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: isolation, characterization, and expression in response to light. PLoS One 6(4):e18665

    CAS  Google Scholar 

  • Watanabe MM, Hiroki M (1997) NIES-Collection. List of strains, algae and protozoa. National Institute for Environmental Studies, Environment Agency, Japan, 140.

  • Watson SB, Monis P, Baker P, Giglio S (2016) Biochemistry and genetics of taste-and odor-producing cyanobacteria. Harmful Algae 54:112–127

    CAS  Google Scholar 

  • Westerhoff P, Rodriguez-Hernandez M, Baker L, Sommerfeld M (2005) Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Res 39(20):4899–4912

    CAS  Google Scholar 

  • Zhang T, Li L, Song L, Chen W (2009) Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii (Cyanophyta). J Appl Phycol 21(3):279–285

    CAS  Google Scholar 

  • Zhang T, Li L, Zheng L, Song L (2017) Effects of nutritional factors on the geosmin production of Lyngbya kuetzingii UTEX 1547 (Oscillatoriales, Cyanobacteria). Phycologia 56(2):221–229

    CAS  Google Scholar 

  • Zimba PV, Dionigi CP, Millie DF (1999) Evaluating the relationship between photopigment synthesis and 2-methylisoborneol accumulation in cyanobacteria. J Phycol 35(6):1422–1429

    CAS  Google Scholar 

Download references

Funding

This study was supported by a Health Labor Sciences Research Grant (H30-Kenki-Ippan-004) from the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Shimizu.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Shimizu, K., Miao, H. et al. Effects of elevated nitrogen on the growth and geosmin productivity of Dolichospermum smithii. Environ Sci Pollut Res 28, 177–184 (2021). https://doi.org/10.1007/s11356-020-10429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10429-4

Keywords

Navigation