Microplastics in a dam lake in Turkey: type, mesh size effect, and bacterial biofilm communities

Abstract

The evaluation of microplastic (MP) pollution has been drawing attention for the last decades. MP pollution has been studied widely in marine environments, but limited data exists for freshwater ecosystems on potential source and transport of MPs. The type, shape, plastic components, and the color of the MPs were investigated using various-mesh-sizes (300 and 100 μm) nets in four sampling stations of Süreyyabey Dam Lake in Turkey. The growth of bacterial isolates on the MPs surface and surrounding water was also investigated. The type of the MPs and the interaction between the mesh size and the type of the MPs showed significant differences (p < 0.05). Fibers were found to be the most abundant particle type constituting 45% and 80% of the total MPs found in 330-μm and 100-μm mesh sizes, respectively. In total the observed MP abundance in the dam lake was 5.25 particles m−3, and 4.09 particles m−3 was observed for 100-μm and 330-μm mesh sizes, respectively. The color of the identified microplastics showed variations among microplastic types; however, the dominant color was transparent in each net. The main plastic components of the MPs are polyethylene terephthalate, polyvinyl chloride, polystyrene, polyethylene, and polypropylene. The microbial community mainly consists of potentially pathogenic strains such as Escherichia coli, Enterococcus faecalis, and Acinetobacter baumanii complex. The current study could contribute valuable background information both for MP pollution and for biofilm composition in a dam. However, the surface of the MPs and biofilm formation should be investigated urgently to understand the vector potential of MPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen S, Allen D, Phoenix VR, le Roux G, Durántez Jiménez P, Simonneau A, Binet S, Galop D (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12:339–344. https://doi.org/10.1038/s41561-019-0335-5

    CAS  Article  Google Scholar 

  2. Amaral-Zettler LA, Zettler ER, Slikas B, Boyd GD, Melvin DW, Morrall CE, Proskurowski G, Mincer TJ (2015) The biogeography of the plastisphere: implications for policy. Front Ecol Environ 13:541–546. https://doi.org/10.1890/150017

    Article  Google Scholar 

  3. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    CAS  Google Scholar 

  4. Andrés Rodríguez-Seijo, Ruth Pereira (2019) Chapter 3. Microplastics in soil: a real environmental hazard? Bioremediation Agric Soils. https://doi.org/10.1201/9781315205137

  5. Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261. https://doi.org/10.1016/j.envpol.2018.02.058

    CAS  Article  Google Scholar 

  6. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985–1998. https://doi.org/10.1098/rstb.2008.0205

    CAS  Article  Google Scholar 

  7. Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T (2016) Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ Toxicol Chem 35:1656–1666. https://doi.org/10.1002/etc.3361

    CAS  Article  Google Scholar 

  8. Benzer S (2018) New record of the kizilirmak killifish (Aphanius Marassantensis Pfleiderer, Geiger & Herder, 2014) from Süreyyabey Dam Lake in Yeşilırmak Basın. Mugla J Sci Technol 41–45. https://doi.org/10.22531/muglajsci.396426

  9. Briand JF, Djeridi I, Jamet D, Coupé S, Bressy C, Molmeret M, le Berre B, Rimet F, Bouchez A, Blache Y (2012) Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling 28:453–463. https://doi.org/10.1080/08927014.2012.688957

    CAS  Article  Google Scholar 

  10. Bryant JA, Clemente TM, Viviani DA, et al (2016) Diversity and activity of communities inhabiting plastic debris in the North Pacific gyre. mSystems 1:e00024-16. https://doi.org/10.1128/msystems.00024-16

  11. Carpenter EJ, Smith KL (1972) Plastics on the Sargasso Sea surface. Science (80- ). https://doi.org/10.1126/science.175.4027.1240

  12. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    CAS  Article  Google Scholar 

  13. Caruso G (2020) Microbial colonization in marine environments : overview of current knowledge and emerging research topics. J Mar Sci Eng 8:78–100

    Article  Google Scholar 

  14. Chércoles Asensio R, San Andrés Moya M, De La Roja JM, Gómez M (2009) Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal Bioanal Chem 395:2081–2096. https://doi.org/10.1007/s00216-009-3201-2

    CAS  Article  Google Scholar 

  15. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    CAS  Article  Google Scholar 

  16. Consul PC, Famoye F (1992) Generalized poisson regression model. Commun Stat - Theory Methods 21:89–109. https://doi.org/10.1080/03610929208830766

    Article  Google Scholar 

  17. Covernton GA, Pearce CM, Gurney-Smith HJ, Chastain SG, Ross PS, Dower JF, Dudas SE (2019) Size and shape matter: a preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment. Sci Total Environ 667:124–132. https://doi.org/10.1016/j.scitotenv.2019.02.346

    CAS  Article  Google Scholar 

  18. De Tender CA, Devriese LI, Haegeman A et al (2015) Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49:9629–9638. https://doi.org/10.1021/acs.est.5b01093

    CAS  Article  Google Scholar 

  19. Di M, Wang J (2018) Science of the total environment microplastics in surface waters and sediments of the three gorges. Sci Total Environ 616–617:1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150

    CAS  Article  Google Scholar 

  20. Dris R, Gasperi J, Rocher V, Tassin B (2018) Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris megacity: sampling methodological aspects and flux estimations. Sci Total Environ 618:157–164. https://doi.org/10.1016/j.scitotenv.2017.11.009

    CAS  Article  Google Scholar 

  21. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. https://doi.org/10.1016/j.watres.2015.02.012

    CAS  Article  Google Scholar 

  22. Eich A, Mildenberger T, Laforsch C, Weber M (2015) Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0137201

    CAS  Article  Google Scholar 

  23. Fahrenfeld NL, Arbuckle-Keil G, Naderi Beni N, Bartelt-Hunt SL (2019) Source tracking microplastics in the freshwater environment. TrAC - Trends Anal Chem 112:248–254. https://doi.org/10.1016/j.trac.2018.11.030

    CAS  Article  Google Scholar 

  24. Fischer EK, Paglialonga L, Czech E, Tamminga M (2016) Microplastic pollution in lakes and lake shoreline sediments - a case study on Lake Bolsena and Lake Chiusi (Central Italy). Environ Pollut 213:648–657. https://doi.org/10.1016/j.envpol.2016.03.012

    CAS  Article  Google Scholar 

  25. Frias JPGL, Gago J, Otero V, Sobral P (2016) Microplastics in coastal sediments from southern Portuguese shelf waters. Mar Environ Res 114:24–30. https://doi.org/10.1016/j.marenvres.2015.12.006

    CAS  Article  Google Scholar 

  26. Hachich EM, Di Bari M, Christ APG et al (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian J Microbiol 43:675–681. https://doi.org/10.1590/S1517-83822012000200032

    Article  Google Scholar 

  27. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    CAS  Article  Google Scholar 

  28. Hoellein T, Rojas M, Pink A, Gasior J, Kelly J (2014) Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS One 9:e98485. https://doi.org/10.1371/journal.pone.0098485

    CAS  Article  Google Scholar 

  29. Horton AA, Dixon SJ (2018) Microplastics: an introduction to environmental transport processes. Wiley Interdiscip Rev Water 5(e1268):1–10. https://doi.org/10.1002/wat2.1268

    Article  Google Scholar 

  30. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    CAS  Article  Google Scholar 

  31. Jung MR, Horgen FD, Orski SV, Rodriguez C. V, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD, Jensen BA, Lynch JM (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

    CAS  Article  Google Scholar 

  32. Kesy K, Oberbeckmann S, Kreikemeyer B, Labrenz M (2019) Spatil environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea mesocosms. Front Microbiol. 10:eo1665 https://doi.org/10.3389/fmicb.2019.01665

  33. Kettner MT, Rojas-Jimenez K, Oberbeckmann S, Labrenz M, Grossart HP (2017) Microplastics alter composition of fungal communities in aquatic ecosystems. Environ Microbiol 19:4447–4459. https://doi.org/10.1111/1462-2920.13891

    CAS  Article  Google Scholar 

  34. Kirstein IV, Kirmizi S, Wichels A et al (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8. https://doi.org/10.1016/j.marenvres.2016.07.004

    CAS  Article  Google Scholar 

  35. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326. https://doi.org/10.1021/acs.est.5b06069

    CAS  Article  Google Scholar 

  36. Koelmans AA, Hazimah N, Nor M et al (2019) Microplastics in freshwaters and drinking water : critical review and assessment of data quality. Water Res 155:410–422. https://doi.org/10.1016/j.watres.2019.02.054

    CAS  Article  Google Scholar 

  37. Liu K, Wang X, Fang T, Xu P, Zhu L, Li D (2019) Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110

    CAS  Article  Google Scholar 

  38. Lönnstedt OM, Eklöv P (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science (80- ). https://doi.org/10.1126/science.aad8828

  39. Lyons MM, Ward JE, Gaff H, Hicks RE, Drake JM, Dobbs FC (2010) Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat Microb Ecol 60:1–13. https://doi.org/10.3354/ame01417

    Article  Google Scholar 

  40. Masó M, Garcés E, Pagès F, Camp J (2003) Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci Mar 67:107–111. https://doi.org/10.3989/scimar.2003.67n1107

    Article  Google Scholar 

  41. Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218:1045–1054. https://doi.org/10.1016/j.envpol.2016.08.056

    CAS  Article  Google Scholar 

  42. Masura J, Baker J, Foster G, Arthur C (2015) Laboratory methods for the analysis of microplastics in the marine environment. NOAA Mar Debris Progr Natl 70:1–39. https://doi.org/10.1016/j.jjcc.2016.11.011

    Article  Google Scholar 

  43. McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48:11863–11871. https://doi.org/10.1021/es503610r

    CAS  Article  Google Scholar 

  44. Montarsolo A, Mossotti R, Patrucco A, Caringella R, Zoccola M, Pozzo PD, Tonin C (2018) Study on the microplastics relese from fishing nets. Eur Phys J Plus 133:1–13. https://doi.org/10.1140/epjp/i2018-12415-1

  45. Moore CJ, Lattin GL, Zellers AF (2011) Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Rev Gestão Costeira Integr 11:65–73. https://doi.org/10.5894/rgci194

    Article  Google Scholar 

  46. Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG (2016) A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts 18:1050–1059. https://doi.org/10.1039/c6em00206d

    CAS  Article  Google Scholar 

  47. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn MA (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiol Ecol 90:478–492. https://doi.org/10.1111/1574-6941.12409

    CAS  Article  Google Scholar 

  48. Oberbeckmann S, Löder MGJ, Labrenz M (2015) Marine microplastic-associated biofilms: A review. Environ Chemist. https://doi.org/10.1071/EN15069

  49. Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle : substrate. Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris 11:1–24. https://doi.org/10.1371/journal.pone.0159289

    CAS  Article  Google Scholar 

  50. Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.02709

    Article  Google Scholar 

  51. Oluniyi Solomon O, Palanisami T (2016) Microplastics in the marine environment: current status, assessment methodologies, Impacts and Solutions. J Pollut Eff Control 04. https://doi.org/10.4172/2375-4397.1000161

  52. Pernthaler J, Amann R (2005) Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol Mol Biol Rev 69:440–461. https://doi.org/10.1128/mmbr.69.3.440-461.2005

    CAS  Article  Google Scholar 

  53. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  54. Rios Mendoza LM, Balcer M (2019) Microplastics in freshwater environments: a review of quantification assessment. TrAC - Trends Anal Chem 113:402–408. https://doi.org/10.1016/j.trac.2018.10.020

    CAS  Article  Google Scholar 

  55. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661. https://doi.org/10.1016/j.scitotenv.2014.06.051

    CAS  Article  Google Scholar 

  56. Romeo T, Pietro B, Pedà C, Consoli P, Andaloro F, Fossi MC (2015) First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar Pollut Bull 95:358–361. https://doi.org/10.1016/j.marpolbul.2015.04.048

    CAS  Article  Google Scholar 

  57. Shapiro K, Krusor C, Mazzillo FFM, Conrad PA, Largier JL, Mazet JAK, Silver MW (2014) Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc R Soc B Biol Sci 281:20141287. https://doi.org/10.1098/rspb.2014.1287

    Article  Google Scholar 

  58. Su L, Xue Y, Li L, Yang D, Kolandhasamy P, Li D, Shi H (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719. https://doi.org/10.1016/j.envpol.2016.06.036

    CAS  Article  Google Scholar 

  59. Subramanian PM (2000) Plastics recycling and waste management in the US. In: Resources, Conservation and Recycling

  60. Thompson RC, Olson Y, Mitchell RP, et al (2004) Lost at sea: where is all the plastic? Science (80- ) 304:838. https://doi.org/10.1126/science.1094559

  61. Thompson RC, Swan SH, Moore CJ, Vom Saal FS (2009) Our plastic age. Philos Trans R Soc B Biol Sci 364:1973–1976. https://doi.org/10.1098/rstb.2009.0054

    Article  Google Scholar 

  62. Vermaire JC, Pomeroy C, Herczegh SM, Haggart O, Murphy M (2017) Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2:301–314. https://doi.org/10.1139/facets-2016-0070

    Article  Google Scholar 

  63. Von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335. https://doi.org/10.1021/es302332w

    CAS  Article  Google Scholar 

  64. Wang W, Ndungu AW, Li Z, Wang J (2017) Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Sci Total Environ 575:1369–1374. https://doi.org/10.1016/j.scitotenv.2016.09.213

    CAS  Article  Google Scholar 

  65. Wang G, Chen Y, Xu G, Pei Y (2019) Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Int J Biol Macromol 129:198–206. https://doi.org/10.1016/j.ijbiomac.2019.02.039

    CAS  Article  Google Scholar 

  66. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    CAS  Article  Google Scholar 

  67. Xia X, Sun M, Zhou M, et al. (2020) Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in Cyprinus carpio var. larvae. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.136479

  68. Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P (2015) Microplastic pollution in table salts from China. Environ Sci Technol 49:13622–13627. https://doi.org/10.1021/acs.est.5b03163

    CAS  Article  Google Scholar 

  69. Zbyszewski M, Corcoran PL, Hockin A (2014) Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J Great Lakes Res. 40:288–299. https://doi.org/10.1016/j.jglr.2014.02.012

    CAS  Article  Google Scholar 

  70. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. https://doi.org/10.1021/es401288x

    CAS  Article  Google Scholar 

  71. Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M (2020) Atmospheric microplastics: a review on current status and perspectives. Earth-Science Rev 203:103118. https://doi.org/10.1016/j.earscirev.2020.103118

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Figen Erkoç for her valuable inputs during the preparation of this manuscript, Dr. Eti Ester Levi for language editing, and Eren Germeç for the preparation of Fig. 1 using ArcGIS tools.

Funding

This study is partly funded by Yozgat Bozok University BAP unit (Project no: 6602a-FEN/18-226).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ülkü Nihan Tavşanoğlu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 480 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavşanoğlu, Ü.N., Başaran Kankılıç, G., Akca, G. et al. Microplastics in a dam lake in Turkey: type, mesh size effect, and bacterial biofilm communities. Environ Sci Pollut Res 27, 45688–45698 (2020). https://doi.org/10.1007/s11356-020-10424-9

Download citation

Keywords

  • Microplastics
  • Freshwater
  • Contamination
  • Biofilm
  • Süreyyabey Dam Lake
  • Mesh size
  • FT-IR