• Physical, Chemical and Biological Process Techniques and Tools for Pollution Prevention and Sustainability
  • Published:

Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples

Abstract

Health effects resulting from the smoke of carbonyl compounds (aldehydes and ketones) and metal-containing incense particles at temples during incense burning periods were evaluated at temple A (without incense reduction activities) and B (with incense reduction activities), Nantou County, in 2018. The predominant size fractions of particles were PM1, PM1–2.5, and PM2.5–10 at both temples. The total particle mass at temple A was approximately 1.1 times that of temple B due to incense reduction at temple B. The most abundant metal elements in all particle size fractions at both temples were Fe, Al, and Zn. Metal species of incense smoke are divided into three groups by hierarchical cluster analysis and heatmaps, showing higher metal contents in groups PM1, PM18–10, and PM18–2.5 at temple A. In contrast, higher metal contents were observed in PM18–10 and PM2.5–1 at temple B. Most of the carbonyl species were formaldehyde and acetaldehyde, released during incense burning periods, with concentrations ranging from 6.20 to 13.05 μg/m3 at both temples. The total deposited fluxes of particle-bound metals at temples A and B were determined to be 83.00% and 84.82% using the International Commission on Radiological Protection (ICRP) model. Health-risk assessments revealed that the risk values of metals and carbonyls were above recommended guidelines (10−6) at temple A. Since worshippers and staff are exposed to incense burning environments with poor ventilation over a long period, these toxic organic compounds and metals increase health risks in the respiratory tract. Therefore, incense reduction is important to achieve healthy temple environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. https://doi.org/10.1007/s00204-008-0313-y

    CAS  Article  Google Scholar 

  2. Burridge C (2020) Incense in medicine: an early medieval perspective. Early Medieval Eur 28:219–255. https://doi.org/10.1111/emed.12394

    Article  Google Scholar 

  3. Chen L-Y, Christine H (2016) Incense burning during pregnancy and birth weight and head circumference among term births: the Taiwan birth cohort study. Environ Health Perspect 124:1487–1492. https://doi.org/10.1289/ehp.1509922

    Article  Google Scholar 

  4. Chiba M, Masironi R (1992) Toxic and trace elements in tobacco and tobacco smoke. Bull World Health Organ 70:269

    CAS  Google Scholar 

  5. Chuang H-C, Jones T, Chen T-T, BéruBé K (2013) Cytotoxic effects of incense particles in relation to oxidative stress, the cell cycle and F-actin assembly. Toxicol Lett 220:229–237. https://doi.org/10.1016/j.toxlet.2013.05.004

    CAS  Article  Google Scholar 

  6. Cohen R, Sexton KG, Yeatts KB (2013) Hazard assessment of United Arab Emirates (UAE) incense smoke. Sci Total Environ 458–460:176–186. https://doi.org/10.1016/j.scitotenv.2013.03.101

    CAS  Article  Google Scholar 

  7. Dalibalta S, Elsayed Y, Alqtaishat F, Gomes I, Fernandes N (2015) A health risk assessment of Arabian incense (Bakhour) smoke in the United Arab Emirates. Sci Total Environ 511:684–691. https://doi.org/10.1016/j.scitotenv.2014.12.024

    CAS  Article  Google Scholar 

  8. Dhaware D, Deshpande A, Khandekar RN, Chowgule R (2009) Determination of toxic metals in Indian smokeless tobacco products. Sci World J 9:1140–1147. https://doi.org/10.1100/tsw.2009.132

    CAS  Article  Google Scholar 

  9. Elihn K, Berg P, Lidén G (2011) Correlation between airborne particle concentrations in seven industrial plants and estimated respiratory tract deposition by number, mass and elemental composition. J Aerosol Sci 42:127–141. https://doi.org/10.1016/j.jaerosci.2010.12.003

    CAS  Article  Google Scholar 

  10. Elsayed Y, Dalibalta S, Gomes I, Fernandes N, Alqtaishat F (2016) Chemical composition and potential health risks of raw Arabian incense (Bakhour). J Saudi Chem Soc 20:465–473. https://doi.org/10.1016/j.jscs.2014.10.005

    CAS  Article  Google Scholar 

  11. EPA (1989) Risk assessment guidance for superfund. Volume I: Human Health Evaluation Manual (Part A), EPA/540/1–89/002

  12. Fang G-C, Chang C-N, Chu C-C, Wu YS, Pi-Cheng Fu P, Chang SC, Yang IL (2003) Fine (PM2.5), coarse (PM2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere 51:983–991. https://doi.org/10.1016/S0045-6535(03)00124-3

    CAS  Article  Google Scholar 

  13. Grosjean D, Grosjean E, Moreira LFR (2002) Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environ Sci Technol 36:1389–1395. https://doi.org/10.1021/es0111232

    CAS  Article  Google Scholar 

  14. He Y-Q, Xue W-Q, Shen G-P, Tang LL, Zeng YX, Jia WH (2015) Household inhalants exposure and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 15:1022. https://doi.org/10.1186/s12885-015-2035-x

    Article  Google Scholar 

  15. He J-R, Wei D-M, Chan F-F, Luan YZ, Tu S, Lu JH, Li WD, Yuan MY, Chen NN, Chen QZ, Lam KBH, Cheng KK, Xia HM, Qiu X (2018) Associations between maternal exposure to incense burning and blood pressure during pregnancy. Sci Total Environ 610–611:1421–1427. https://doi.org/10.1016/j.scitotenv.2017.08.134

    CAS  Article  Google Scholar 

  16. Heys KA, Shore RF, Pereira MG, Jones KC, Martin FL (2016) Risk assessment of environmental mixture effects. RSC Adv 6:47844–47857. https://doi.org/10.1039/C6RA05406D

    CAS  Article  Google Scholar 

  17. Ho KF, Lee SC, Louie PKK, Zou SC (2002) Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos Environ 36:1259–1265. https://doi.org/10.1016/S1352-2310(01)00570-2

    CAS  Article  Google Scholar 

  18. Ho C-K, Tseng W-R, Yang C-Y (2005) Adverse respiratory and irritant health effects in temple workers in Taiwan. J Toxic Environ Health A 68:1465–1470. https://doi.org/10.1080/15287390590967405

    CAS  Article  Google Scholar 

  19. Huang C-L, Bao L-J, Luo P, Wang ZY, Li SM, Zeng EY (2016) Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals. J Hazard Mater 317:449–456. https://doi.org/10.1016/j.jhazmat.2016.05.081

    CAS  Article  Google Scholar 

  20. Hussain T, Al-Attas OS, Al-Daghri NM et al (2014) Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem 391:127–136. https://doi.org/10.1007/s11010-014-1995-5

    CAS  Article  Google Scholar 

  21. Hwang Y-H, Lin Y-S, Lin C-Y, Wang I-J (2014) Incense burning at home and the blood lead level of preschoolers in Taiwan. Environ Sci Pollut Res 21:13480–13487. https://doi.org/10.1007/s11356-014-3273-1

    CAS  Article  Google Scholar 

  22. ICRP. (1994) Human respiratory tract model for radiological protection. ICRP Publication 66. Annals of the 1CRP 24 (1–3), Elsevier Science Ltd., Oxford

  23. Kasumba J, Hettick B, French A, Wickliffe JK, Lichtveld MY, Hawkins WB, van Sauers-Muller A, Klein D (2016) Analysis of pesticides and toxic heavy metals contained in mosquito coils. Bull Environ Contam Toxicol 97:614–618. https://doi.org/10.1007/s00128-016-1938-9

    CAS  Article  Google Scholar 

  24. Lai C-H, Lin C-H, Liao C-C (2017) Respiratory deposition and health risk of inhalation of particle-bound heavy metals in the carbon black feeding area of a tire manufacturer. Air Qual Atmos Health 10:1281–1289. https://doi.org/10.1007/s11869-017-0515-7

    CAS  Article  Google Scholar 

  25. Lai C-H, Lin C-H, Liao C-C, Chuang KY, Peng YP (2018) Effects of heavy metals on health risk and characteristic in surrounding atmosphere of tire manufacturing plant, Taiwan. RSC Adv 8:3041–3050. https://doi.org/10.1039/C7RA10994F

    CAS  Article  Google Scholar 

  26. Lee Y-L, Lin Y-C, Hsiue T-R, Hwang BF, Guo YL (2003) Indoor and outdoor environmental exposures, parental atopy, and physician-diagnosed asthma in Taiwanese schoolchildren. PEDIATRICS 112:e389–e389. https://doi.org/10.1542/peds.112.5.e389

    Article  Google Scholar 

  27. Lin T-C, Yang C-R, Chang F-H (2007) Burning characteristics and emission products related to metallic content in incense. J Hazard Mater 140:165–172. https://doi.org/10.1016/j.jhazmat.2006.06.052

    CAS  Article  Google Scholar 

  28. Lin T-C, Krishnaswamy G, Chi DS (2008) Incense smoke: clinical, structural and molecular effects on airway disease. Clin Mol Allergy 6:3. https://doi.org/10.1186/1476-7961-6-3

    CAS  Article  Google Scholar 

  29. Lin C-H, Lai C-H, Peng Y-P, Wu PC, Chuang KY, Yen TY, Xiang YK (2019) Comparative health risk of inhaled exposure to organic solvents, toxic metals, and hexavalent chromium from the use of spray paints in Taiwan. Environ Sci Pollut Res 26:33906–33916. https://doi.org/10.1007/s11356-018-2669-8

    CAS  Article  Google Scholar 

  30. Lui KH, Bandowe BAM, Ho SSH, Chuang HC, Cao JJ, Chuang KJ, Lee SC, Hu D, Ho KF (2016) Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning. Environ Pollut 213:524–532. https://doi.org/10.1016/j.envpol.2016.02.053

    CAS  Article  Google Scholar 

  31. Lyu Y, Zhang K, Chai F, Cheng T, Yang Q, Zheng Z, Li X (2017) Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: indications of respiratory deposition and health risk. Environ Pollut 224:559–571. https://doi.org/10.1016/j.envpol.2017.02.039

    CAS  Article  Google Scholar 

  32. Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, Pereira MC, Teixeira JP, Costa C (2020) Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci Total Environ 717:137293. https://doi.org/10.1016/j.scitotenv.2020.137293

    CAS  Article  Google Scholar 

  33. Manoukian A, Quivet E, Temime-Roussel B, Nicolas M, Maupetit F, Wortham H (2013) Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres. Environ Sci Pollut Res 20:4659–4670. https://doi.org/10.1007/s11356-012-1394-y

    CAS  Article  Google Scholar 

  34. MFTS-Ministry of Finance trade statistics, Ministry of Finance, Republic of China (2020) Available at: http://web02.mof.gov.tw/njswww/WebProxy.aspx?sys=100&funid=edefjsptgl (Accessed 01 Mar 2020)

  35. MHW-Department of Traditional Chinese Medicine, Ministry of Health and Welfare, Republic of China (2020) Available at: https://dep.mohw.gov.tw/DOCMAP/cp-4384-38404-108.html (Accessed 01 Mar 2020)

  36. Navasumrit P, Arayasiri M, Hiang OMT, Leechawengwongs M, Promvijit J, Choonvisase S, Chantchaemsai S, Nakngam N, Mahidol C, Ruchirawat M (2008) Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chem Biol Interact 173:19–31. https://doi.org/10.1016/j.cbi.2008.02.004

    CAS  Article  Google Scholar 

  37. Palaniappan PLRM, Karthikeyan S (2009) Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci 21:229–236. https://doi.org/10.1016/S1001-0742(08)62256-1

    CAS  Article  Google Scholar 

  38. Pan A, Clark ML, Li-Wei A et al (2014) Incense use and cardiovascular mortality among Chinese in Singapore: the Singapore Chinese Health Study. Environ Health Perspect 122:1279–1284. https://doi.org/10.1289/ehp.1307662

    Article  Google Scholar 

  39. See SW, Balasubramanian R, Joshi UM (2007) Physical characteristics of nanoparticles emitted from incense smoke. Sci Technol Adv Mater 8:25–32. https://doi.org/10.1016/j.stam.2006.11.016

    CAS  Article  Google Scholar 

  40. Shepson PB, Hastie DR, Schiff HI, Polizzi M, Bottenheim JW, Anlauf K, Mackay GI, Karecki DR (1991) Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontario. Atmos Environ Part A 25:2001–2015. https://doi.org/10.1016/0960-1686(91)90280-K

    Article  Google Scholar 

  41. Smith H (1994) Human respiratory tract model for radiological protection. ICRP Publication 66

  42. Tang L, Wei-Yen L, Philip E et al (2010) Lung cancer in Chinese women: evidence for an interaction between tobacco smoking and exposure to inhalants in the indoor environment. Environ Health Perspect 118:1257–1260. https://doi.org/10.1289/ehp.0901587

    Article  Google Scholar 

  43. Tarrago O, & Brown MJ (2017) Lead toxicity. What are possible health effects from lead exposure. Case Studies In Environmental Medicine (CSEM): lead Toxicity. Environmental Health and Medicine Education

  44. Tong X, Chen X-C, Chuang H-C, Cao JJ, Ho SSH, Lui KH, Ho KF (2019) Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. Air Qual Atmos Health 12:1459–1468. https://doi.org/10.1007/s11869-019-00762-0

    CAS  Article  Google Scholar 

  45. USEPA (1999). Compendium of methods for the determination of toxic organic compounds in ambient air second edition: compendium method TO-11A determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC), U.S. Environmental Protection Agency, Cincinnati, OH 45268

  46. Višić B, Kranjc E, Pirker L, Bačnik U, Tavčar G, Škapin S, Remškar M (2018) Incense powder and particle emission characteristics during and after burning incense in an unventilated room setting. Air Qual Atmos Health 11:649–663. https://doi.org/10.1007/s11869-018-0572-6

    CAS  Article  Google Scholar 

  47. Vu TV, Ondracek J, Zdímal V, Schwarz J, Delgado-Saborit JM, Harrison RM (2017) Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual Atmos Health 10:1–14. https://doi.org/10.1007/s11869-016-0424-1

    CAS  Article  Google Scholar 

  48. Wang I-J, Tsai C-H, Chen C-H, Tung KY, Lee YL (2011) Glutathione S-transferase, incense burning and asthma in children. Eur Respir J 37:1371–1377. https://doi.org/10.1183/09031936.00137210

    CAS  Article  Google Scholar 

  49. Wong A, Lou W, Ho K, Yiu BKF, Lin S, Chu WCW, Abrigo J, Lee D, Lam BYK, Au LWC, Soo YOY, Lau AYL, Kwok TCY, Leung TWH, Lam LCW, Ho K, Mok VCT (2020) Indoor incense burning impacts cognitive functions and brain functional connectivity in community older adults. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-63568-6

    CAS  Article  Google Scholar 

  50. Xie S-H, Yu IT, Tse LA, Au JSK, Wang F, Lau JSM, Zhang B (2014) Domestic incense burning and nasopharyngeal carcinoma: a case-control study in Hong Kong Chinese. Environ Mol Mutagen 55:751–756. https://doi.org/10.1002/em.21894

    CAS  Article  Google Scholar 

  51. Xu X, Li Y, Wang Y, Wang Y (2011) Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol in Vitro 25:294–300. https://doi.org/10.1016/j.tiv.2010.09.007

    CAS  Article  Google Scholar 

  52. Yang TT, Lin TS, Wu JJ, Jhuang FJ (2012) Characteristics of polycyclic aromatic hydrocarbon emissions of particles of various sizes from smoldering incense. Bull Environ Contam Toxicol 88:271–276. https://doi.org/10.1007/s00128-011-0446-1

    CAS  Article  Google Scholar 

  53. Yang T-T, Ho S-C, Chuang L-T, Chuang HC, Li YT, Wu JJ (2017) Characterization of particulate-phase polycyclic aromatic hydrocarbons emitted from incense burning and their bioreactivity in RAW264.7 macrophage. Environ Pollut 220:1190–1198. https://doi.org/10.1016/j.envpol.2016.11.016

    CAS  Article  Google Scholar 

  54. Zhou R, An Q, Pan XW, Yang B, Hu J, Wang YH (2015) Higher cytotoxicity and genotoxicity of burning incense than cigarette. Environ Chem Lett 13:465–471. https://doi.org/10.1007/s10311-015-0521-7

    CAS  Article  Google Scholar 

  55. Zhou W, Shen M, Lam JCW, Zhu M, Liu L, Chen H, du B, Zeng L, Zeng EY (2018) Size-dependent distribution and inhalation exposure characteristics of particle-bound chlorinated paraffins in indoor air in Guangzhou, China. Environ Int 121:675–682. https://doi.org/10.1016/j.envint.2018.10.004

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the help provided by Y.C. Chang, professor, and the project team members of National Chi Nan University, Taiwan.

Funding

This research was funded by the practice program of the University of Social Responsibility (Development of Green Sazum: Intelligence × Pollution Reduction × Recycle), Ministry of Education in Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chia-Hsiang Lai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Tsai, Y., Lai, C. et al. Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-10313-1

Download citation

Keywords

  • Temple
  • Incense burning
  • Size distributions
  • Heavy metals
  • Carbonyl compounds
  • Health-risk assessment