Skip to main content

Graphite/gold nanoparticles electrode for direct protein attachment: characterization and gas sensing application

Abstract

In this work, graphite/gold nanoparticles (G/AuNPs) were synthesized through a facile chemical method, and its potential application for direct protein attachment for electrochemical detection of carbon monoxide (CO) was investigated. The preparation of G/AuNPs electrodes was optimized by synthesizing the nanoparticles in different concentration of HAuCl4.3H2O at various temperatures. The G/AuNPs electrode was subsequently modified by four types of mercaptopropionic acid, including 1-mercaptopropionic, 3-mercaptopropionic, 6-mercaptopropionic, and 11-mercaptopropionic acid, to achieve the best structure for protein attachment. Visible absorption and electrochemical studies showed that 3-mercaptopropionic acid possesses the best performance regarding the electrical conductivity between electrode and protein redox center. The cyclic voltammetry results revealed that the modified electrode has an appropriate performance for CO detection at very low concentrations while keeping a linear response. The limit of detection for the modified electrode was calculated to be about 0.2 ppb. Finally, the interactions of cytochrome C and carbon monoxides were simulated using molecular dynamics (MD), and the effect of protein conformation changes on the electrochemical signal was thoroughly examined. The simulation results suggested that the proposed electrochemical sensor has an acceptable performance for the detection of CO due to less fluctuation of amino acids near the protein chain in the presence of CO molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abass A, Hart J, Cowell D (2000) Development of an amperometric sulfite biosensor based on sulfite oxidase with cytochrome c, as electron acceptor, and a screen-printed transducer. Sensors Actuators B Chem 62:148–153

    Article  CAS  Google Scholar 

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  Google Scholar 

  • Baniasadi L et al (2014) An inhibitory enzyme electrode for hydrogen sulfide detection. Enzym Microb Technol 63:7–12

    Article  Google Scholar 

  • Bitaab M, Siadat SR, Pazooki J, Sefidbakht Y (2015) Antibacterial and molecular dynamics study of the Dolabellanin B2 isolated from sea slug, Peronia peronii. Biosci Biotechnol Res Asia 12:2023–2035

    Article  Google Scholar 

  • Blyth DJ, Aylott JW, Richardson DJ, Russell DA (1995) Sol–gel encapsulation of metalloproteins for the development of optical biosensors for nitrogen monoxide and carbon monoxide. Analyst 120:2725–2730

    Article  CAS  Google Scholar 

  • Canterford D (1975) Simultaneous determination of cyanide and sulfide with rapid direct current polarography. Anal Chem 47:88–92

    Article  CAS  Google Scholar 

  • Cedervall T et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055

    Article  CAS  Google Scholar 

  • Dolan MC (1985) Carbon monoxide poisoning. Can Med Assoc J 133:392

    CAS  Google Scholar 

  • Dürr M, Rosselli S, Yasuda A, Nelles G (2006) Band-gap engineering of metal oxides for dye-sensitized solar cells. J Phys Chem B 110:21899–21902

    Article  Google Scholar 

  • Ehsani A, Parsimehr H, Nourmohammadi H, Safari R, Doostikhah S (2019) Environment-friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices. Polym Compos 40:4629–4637. https://doi.org/10.1002/pc.25330

    Article  CAS  Google Scholar 

  • Ehsani A, Bigdeloo M, Assefi F, Kiamehr M, Alizadeh R (2020) Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. Inorg Chem Commun 115:107885. https://doi.org/10.1016/j.inoche.2020.107885

    Article  CAS  Google Scholar 

  • Eshlaghi MA, Kowsari E, Ehsani A, Akbari-Adergani B, Hekmati M (2020) Functionalized graphene oxide GO-[Imi-(CH2)2-NH2] as a high efficient material for electrochemical sensing of lead: synthesis surface and electrochemical characterization. J Electroanal Chem 858:113784. https://doi.org/10.1016/j.jelechem.2019.113784

    Article  CAS  Google Scholar 

  • Farivar F, Moosavi-Movahedi AA, Sefidbakht Y, Nazari K, Hong J, Sheibani N (2010) Cytochrome c in sodium dodecyl sulfate reverse micelle nanocage: from a classic electron carrier protein to an artificial peroxidase enzyme. Biochem Eng J 49:89–94

    Article  CAS  Google Scholar 

  • Hough MA, Andrew CR (2015) Chapter one - cytochromes c’: structure, reactivity and relevance to haem-based gas sensing. In: Poole RK (ed) Advances in Microbial Physiology, vol 67. Academic Press, pp 1-84. https://doi.org/10.1016/bs.ampbs.2015.08.001

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  • Joosten RP et al (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:D411–D419

    Article  CAS  Google Scholar 

  • Kakaei K (2017) High efficiency platinum nanoparticles based on carbon quantum dot and its application for oxygen reduction reaction. Int J Hydrogen Energy 42:11605–11613. https://doi.org/10.1016/j.ijhydene.2017.01.057

    Article  CAS  Google Scholar 

  • Kakaei K, Gharibi H (2014) Palladium nanoparticle catalysts synthesis on graphene in sodium dodecyl sulfate for oxygen reduction reaction. Energy 65:166–171. https://doi.org/10.1016/j.energy.2013.12.005

    Article  CAS  Google Scholar 

  • Kakaei K, Rahimi A, Husseindoost S, Hamidi M, Javan H, Balavandi A (2016) Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. Int J Hydrogen Energy 41:3861–3869. https://doi.org/10.1016/j.ijhydene.2016.01.013

    Article  CAS  Google Scholar 

  • Kakaei K, Esrafili MD, Ehsani A (2019) Chapter 9 - Graphene-based electrochemical supercapacitors. In: Kakaei K, Esrafili MD, Ehsani A (eds) Interface Science and Technology, vol 27. Elsevier, pp 339-386. https://doi.org/10.1016/B978-0-12-814523-4.00009-5

  • Kuretake T, Kawahara S, Motooka M, Uno S (2017) An electrochemical gas biosensor based on enzymes immobilized on chromatography paper for ethanol vapor detection. Sensors (Basel) 17:281. https://doi.org/10.3390/s17020281

    Article  CAS  Google Scholar 

  • Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2009) Interaction of gold nanoparticles with common human blood proteins. ACS nano 4:365–379

    Article  Google Scholar 

  • Malde AK et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037

    Article  CAS  Google Scholar 

  • Mofenson HC, Caraccio TR, Brody GM (1984) Carbon monoxide poisoning. Am J Emergency Med 2:254–261

    Article  CAS  Google Scholar 

  • Mojtaba H, Ahmadvand E, Ehsani A (2020) Electroanalytical sensing of piperazine at carbon nanotubes/nafion composite-modified glassy carbon and screen-printed carbon electrodes in human plasma. J Anal Chem 75:238–245. https://doi.org/10.1134/S1061934820020069

    Article  Google Scholar 

  • Moosavi-Movahedi A et al (2008) Micellar histidinate hematin complex as an artificial peroxidase enzyme model: Voltammetric and spectroscopic investigations. Colloids Surf A Physicochem Eng Asp 320:213–221

    Article  CAS  Google Scholar 

  • Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  • Okamoto H, Obayashi H, Kudo T (1980) Carbon monoxide gas sensor made of stabilized zirconia. Solid State Ionics 1:319–326

    Article  CAS  Google Scholar 

  • Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M (2014) Hydrogen sul de detection using a gold nanoparticle/metalloprotein based probe. Chin Phys Lett 31:088701

    Article  Google Scholar 

  • Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M (2015a) Protein-based nanobiosensor for direct detection of hydrogen sulfide EPL. Europhys Lett 109:18005

    Article  Google Scholar 

  • Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M (2015b) Protein based localized surface plasmon resonance gas sensing. Chin Phys Lett 32:018701

    Article  Google Scholar 

  • Oostenbrink C, Soares TA, Van der Vegt NF, Van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284

    Article  CAS  Google Scholar 

  • Rashidi A et al Electromechanical properties of vertically aligned carbon nanotube. In: Advanced Materials Research, 2013. Trans Tech Publ, pp 332–336

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus UM (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  • Salehifar N, Shayeh JS, Ranaei Siadat SO, Niknam K, Ehsani A, Kazemi Movahhed S (2015) Electrochemical study of supercapacitor performance of polypyrrole ternary nanocomposite electrode by fast Fourier transform continuous cyclic voltammetry. RSC Adv 5:96130–96137. https://doi.org/10.1039/C5RA18694C

    Article  CAS  Google Scholar 

  • Savage NO, Akbar SA, Dutta PK (2001) Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors Actuators B Chem 72:239–248

    Article  CAS  Google Scholar 

  • Sefidbakht Y, Nazari K, Farivar F, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA (2012) Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study. J Iran Chem Soc 9:121–128

    Article  CAS  Google Scholar 

  • Sefidbakht Y, Ranaei Siadat O, Taheri F (2016) Homology modeling and molecular dynamics study on Schwanniomyces occidentalis alpha-amylase Journal of Biomolecular Structure and Dynamics:1–11

  • Shayeh JS, Siadat SOR, Sadeghnia M, Niknam K, Rezaei M, Aghamohammadi N (2016) Advanced studies of coupled conductive polymer/metal oxide nano wire composite as an efficient supercapacitor by common and fast fourier electrochemical methods. J Mol Liquids 220:489–494. https://doi.org/10.1016/j.molliq.2016.04.122

    Article  CAS  Google Scholar 

  • Siwko ME, Corni S (2013) Cytochrome C on a gold surface: investigating structural relaxations and their role in protein–surface electron transfer by molecular dynamics simulations. Phys Chem Chem Phys 15:5945–5956. https://doi.org/10.1039/C3CP00146F

    Article  CAS  Google Scholar 

  • Soares CM, Martel PJ, Mendes J, Carrondo MA (1998) Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. Biophys J 74:1708–1721. https://doi.org/10.1016/S0006-3495(98)77882-8

    Article  CAS  Google Scholar 

  • Topoglidis E, Cass AE, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113

    Article  CAS  Google Scholar 

  • Topoglidis E, Astuti Y, Duriaux F, Grätzel M, Durrant JR (2003) Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir 19:6894–6900

    Article  CAS  Google Scholar 

  • Wang L, Wang E (2004) Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem Commun 6:49–54

    Article  CAS  Google Scholar 

  • Weaver LK (1999) Carbon monoxide poisoning. Crit Care Clin 15:297–317

    Article  CAS  Google Scholar 

  • Wolf C, Xu H (2011) Asymmetric catalysis with chiral oxazolidine ligands. Chem Commun 47:3339–3350

    Article  CAS  Google Scholar 

  • Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H (1997) Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 156:1140–1143

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to declare that this investigation was supported by Shahid Beheshti University G.C., research grant. No. 600/1427.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Shabani Shayeh or Meisam Omidi.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayeh, J.S., Sefidbakht, Y., Omidi, M. et al. Graphite/gold nanoparticles electrode for direct protein attachment: characterization and gas sensing application. Environ Sci Pollut Res 27, 43202–43211 (2020). https://doi.org/10.1007/s11356-020-10286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10286-1

Keywords