Metagenomic analysis reveals the effects of cotton straw–derived biochar on soil nitrogen transformation in drip-irrigated cotton field

Abstract

Biochar has been widely accepted as a soil amendment to improve nitrogen (N) use efficiency, but the effect of biochar on N transformation metabolic pathways is unclear. A field experiment was conducted to evaluate the effect of biochar on N transformation in drip-irrigated cotton field. Four treatments were set as (1) no N fertilization (CK), (2) N fertilizer application at 300 kg ha−1 (N300), (3) N fertilizer application plus cotton straw (N300+ST), and (4) N fertilizer application plus cotton straw–derived biochar (N300+BC). Result showed that soil total N in N300+ST and N300+BC was 16.3% and 24.9% higher than that in N300, respectively. Compared with N300+ST, the nitrate N (NO3-N) in N300+BC was significantly increased. Acidolyzable N and non-acidolyzable N in N300+ST and N300+BC were higher than those in CK and N300, while N300+BC performed better than N300+ST. Furthermore, the N fertilizer use efficiency of cotton in N300+ST and N300+BC was 15.1% and 23.2% higher than that in N300, respectively. Both N fertilizer incorporations with straw and biochar significantly altered the microbial community structures and N metabolic pathways. Genes related to denitrification and nitrate reduction in N300+ST were higher than those in N300, and N300+BC significantly increased nitrification and glutamate synthesis genes. Therefore, N fertilizer application plus cotton straw–derived biochar changed the microbial community composition, increased nitrification and glutamate synthesis enzyme genes which were beneficial to the accumulation of soil N content, and improved soil N retention capacity thus to increase N fertilizer use efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ajayi AE, Holthusen D, Horn R (2016) Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res 155:166–175. https://doi.org/10.1016/j.still.2015.08.007

    Article  Google Scholar 

  2. Anderson CR, Hamonts K, Clough TJ, Condron LM (2014) Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. Agric Ecosyst Environ 191:63–72. https://doi.org/10.1016/j.agee.2014.02.021

    CAS  Article  Google Scholar 

  3. Bai NL, Zhang HL, Zhou S, Sun HF, Zhao YH, Zheng XQ, Li SX, Zhang JQ, Lv WG (2020) Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Sci Rep 10:7891. https://doi.org/10.1038/s41598-020-64857-w

    CAS  Article  Google Scholar 

  4. Bai SH, Reverchon F, Xu CY, Xu ZH, Blumfield TJ, Haitao Z, Van ZL, Wallace HM (2015) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. https://doi.org/10.1016/j.soilbio.2015.08.007

    CAS  Article  Google Scholar 

  5. Ball PN, MacKenzie MD, DeLuca TH, Holben MWE (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J Environ Qual 39(4):1243–1253. https://doi.org/10.2134/jeq2009.0082

    CAS  Article  Google Scholar 

  6. Bi QF, Chen QH, Yang XR, Li H, Zheng BX, Zhou WW, Liu XX, Dai PB, Li KJ, Lin XY (2018) Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. AMB Express 7:198. https://doi.org/10.1186/s13568-017-0498-7

    CAS  Article  Google Scholar 

  7. Biederman L, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. https://doi.org/10.1111/gcbb.12037

  8. Bremner JM, Mulvaney C (1982) Nitrogen total. In: Page AL (ed) Methods of soil analysis, Part, vol 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, pp 595–624

    Google Scholar 

  9. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    CAS  Article  Google Scholar 

  10. Castaneda LE, Barbosa O (2017) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. Peer Journal 5:e3098. https://doi.org/10.7717/peerj.3098

    CAS  Article  Google Scholar 

  11. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa Pine Forests. Soil Sci Soc Am J 70(2):448–453. https://doi.org/10.2136/sssaj2005.0096

    CAS  Article  Google Scholar 

  12. Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72. https://doi.org/10.1016/j.apsoil.2013.01.006

    Article  Google Scholar 

  13. Farhangi-Abriz S, Torabian S (2018) Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis 74: 215–223. https://doi.org/10.1007/s13199-017-0509-0

  14. Fracetto FJC, Fracetto GGM, Bertini SCB, Cerri CC, Feigl BJ, Neto MS (2017) Effect of agricultural management on N2O emissions in the Brazilian sugarcane yield. Soil Biol Biochem 109:209–213. https://doi.org/10.1016/j.soilbio.2017.02.004

    CAS  Article  Google Scholar 

  15. Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    CAS  Article  Google Scholar 

  16. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. https://doi.org/10.1038/nature06592

  17. Huang M, Yang L, Qin HD, Jiang LG, Zou YB (2014) Fertilizer nitrogen uptake by rice increased by biochar application. Biol Fertil Soils 50(6):997–1000. https://doi.org/10.1007/s00374-014-0908-9

    CAS  Article  Google Scholar 

  18. Huang M, Long F, Chen JN, Jiang LG, Zou YB (2018) Continuous applications of biochar to rice: effects on nitrogen uptake and utilization. Sci Rep 8(1):11461. https://doi.org/10.1038/s41598-018-29877-7

    CAS  Article  Google Scholar 

  19. Jaiswal AK, Elad Y, Cytryn E, Graber ER, Frenkel O (2018) Activating biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. The New phytologist 219:363–377. https://doi.org/10.1111/nph.15042

    CAS  Article  Google Scholar 

  20. Joseph UE, Toluwase AO, Kehinde EO, Omasan EE, Yetunde AT, George OO, Zhao C, Wang H (2020) Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an albic soil. Arch Agron Soil Sci 66(1):1–12. https://doi.org/10.1080/03650340.2019.1587412

    CAS  Article  Google Scholar 

  21. Kelly H, Tim JC, Alison S, Peter WC, Alan ER, Steven AW, Maureen O, Leo MC (2013) Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol Ecol 83(3):568–584. https://doi.org/10.1111/1574-6941.12015

    CAS  Article  Google Scholar 

  22. Kielland K, McFarland JW, Ruess RW, Olson K (2007) Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems 10(3):360–368. https://doi.org/10.1007/s10021-007-9037-8

    CAS  Article  Google Scholar 

  23. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    CAS  Article  Google Scholar 

  24. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    CAS  Article  Google Scholar 

  25. Li Q, Liao N, Zhang N, Zhou G, Zhang W, Wei X, Ye J, Hou Z (2016) Effects of cotton (Gossypium hirsutum L.) straw and its biochar application on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Soil Sci Plant Nutr 62(5-6):534–544. https://doi.org/10.1080/00380768.2016.1219969

    CAS  Article  Google Scholar 

  26. Liao N, Li Q, Zhang W, Zhou GW, Ma LJ, Min W, Ye J, Hou ZN (2016) Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur J Soil Biol 72:27–34. https://doi.org/10.1016/j.ejsobi.2015.12.008

    CAS  Article  Google Scholar 

  27. Liu M, Tang D, Shi Y, Ma L, Li Y, Zhang Q, Ruan J (2019) Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.). BMC Plant Biol 19:425. https://doi.org/10.1186/s12870-019-2027-0

    CAS  Article  Google Scholar 

  28. Liu Q, Liu BJ, Zhang YH, Lin ZB, Zhu TB, Sun R, Wang XJ, Ma J, Bei QC, Liu G, Lin XW, Xie ZB (2017) Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biol Biochem 104:8–17. https://doi.org/10.1016/j.soilbio.2016.10.006

    CAS  Article  Google Scholar 

  29. Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, Liu G, Ambus P, Xie Z (2018) How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426:211–225. https://doi.org/10.1007/s11104-018-3619-4

    CAS  Article  Google Scholar 

  30. Liu YX, Lu HH, Yang SM, Wang YF (2016) Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop Res 191:161–167. https://doi.org/10.1016/j.fcr.2016.03.003

    Article  Google Scholar 

  31. Ma NN, Zhang LL, Zhang YL, Yang LJ, Yu CX, Yin GH, Doane TA, Wu ZJ, Zhu P, Ma X (2016) Z (2016) Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLoS One 11(5):e0154091. https://doi.org/10.1371/journal.pone.0154091

    CAS  Article  Google Scholar 

  32. Malhi S, Nyborg M, Solberg E, McConkey B, Dyck M, Puurveen D (2011) Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biol Fertil Soils 47(7):785–800. https://doi.org/10.1007/s00374-011-0587-8

    CAS  Article  Google Scholar 

  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  34. Peng Y, Leung HC, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428. https://doi.org/10.1093/bioinformatics/bts174

    CAS  Article  Google Scholar 

  35. Piash MI, Hossain MF, Parveen DZ (2019) Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Sci Agric 3(2):74–83

    Google Scholar 

  36. Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9(1):e86388. https://doi.org/10.1371/journal.pone.0086388

    CAS  Article  Google Scholar 

  37. Raven JA, Handley LL, Andrews M (2004) Global aspects of C/N interactions determining plant-environment interactions. J Exp Bot 55:11–25

    CAS  Article  Google Scholar 

  38. Schreier H (1993) Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In: Sonenshein A, Hoch J, Losick R (eds) Bacillus subtilis and other gram-positive bacteria. ASM Press, Washington, DC, pp 281–298. https://doi.org/10.1128/9781555818388.ch20

    Google Scholar 

  39. Schwartz T, Misri BK, Fock HP (1991) The involvement of glutamate dehydrogenase and glutamine synthetase/glutamate synthase in ammonia assimilation by the basidiomycete fungus Stropharia semiglobata. J Gen Microbiol 137(9):2253–2258. https://doi.org/10.1099/00221287-137-9-2253

    CAS  Article  Google Scholar 

  40. Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75(2):291–303. https://doi.org/10.1111/j.1574-6941.2010.00999.x

    CAS  Article  Google Scholar 

  41. Sorrenti G, Buriani G, Gaggìa F, Baffoni L, Spinelli F, Gioia DD, Toselli M (2017) Soil CO2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Appl Soil Ecol 112:79–89. https://doi.org/10.1016/j.apsoil.2017.01.003

    Article  Google Scholar 

  42. Stevenson FJ (1982) Nitrogen - organic forms. In: Page AL (ed) Methods of soil analysis, Part, vol 2. Chemical and microbiological properties. American Society of Agronomy, Madison, pp 625–641

    Google Scholar 

  43. Su Y, Lv JL, Yu M, Ma ZH, Xi H, Kou CL, He ZC, Shen AL (2019) Long-term decomposed straw return positively affects the soil microbial community. J Appl Microbiol 128:138–150. https://doi.org/10.1111/jam.14435

    CAS  Article  Google Scholar 

  44. Tu QC, He ZL, Wu LY, Xue K, Zhou JZ, Xie G, Chain P, Reich PB, Hobbie SE (2017) Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biol Biochem 106:99–108. https://doi.org/10.1016/j.soilbio.2016.12.017

    CAS  Article  Google Scholar 

  45. Verheijen F G A, Jeffery S, Bastos A C, van der Velde M, Diafas I (2009) Biochar application to soils–a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg, 149pp.

  46. Wang C, Zheng MM, Hu AY, Zhu CQ, Shen RF (2018a) Diazotroph abundance and community composition in an acidic soil in response to aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) cultivars under two nitrogen fertilizer forms. Plant Soil 424(1-2):463–478. https://doi.org/10.1007/s11104-017-3550-0

    CAS  Article  Google Scholar 

  47. Wang YQ, Bai R, Di HJ, Mo LY, Han B, Zhang LM, He JZ (2018b) Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils. Front Microbiol 9:2566. https://doi.org/10.3389/fmicb.2018.02566

    Article  Google Scholar 

  48. Wei T, Zhang P, Wang K (2015) Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One 10(4):e0120994. https://doi.org/10.1371/journal.pone.0120994

    CAS  Article  Google Scholar 

  49. Xiao Z, Rasmann S, Yue L, Lian F, Zou H, Wang Z (2019) The effect of biochar amendment on N-cycling genes in soils: a meta-analysis. Sci Total Environ 696:133984. https://doi.org/10.1016/j.scitotenv.2019.133984

    CAS  Article  Google Scholar 

  50. Xu YC, Shen QR, Ran W (2003) Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization. Chemosphere 50(6):739–745. https://doi.org/10.1016/s0045-6535(02)00214-x

    CAS  Article  Google Scholar 

  51. Yang OY, Tiemann LK, Evans SE, Friesen ML (2018) Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biol Biochem 127:71–78. https://doi.org/10.1016/j.soilbio.2018.08.024

    CAS  Article  Google Scholar 

  52. Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53(1):77–87. https://doi.org/10.1007/s00374-016-1154-0

    CAS  Article  Google Scholar 

  53. Zhang Q, Dijkstra FA, Liu X, Wang Y, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the North China plain. PLoS One 9(7):e102062. https://doi.org/10.1371/journal.pone.0102062

    CAS  Article  Google Scholar 

  54. Zhang L, Lv J (2020) Metagenomic analysis of microbial community and function reveals the response of soil respiration to the conversion of cropland to plantations in the Loess Plateau of China. Glob Ecol Conserv 23:e01067. https://doi.org/10.1016/j.gecco.2020.e01067

    Article  Google Scholar 

  55. Zheng W, Zhao Z, Lv F, Wang R, Gong QL, Zhai BN, Wang ZH, Zhao ZY, Li ZY (2019) Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9 years. Biol Fertil Soils 55(9):1–17. https://doi.org/10.1007/s00374-019-01356-9

    CAS  Article  Google Scholar 

  56. Zhong ML, Cheng RC, Mehran RR (2018) High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil. GCB Bioenergy 10:930–945. https://doi.org/10.1111/gcbb.12529

    CAS  Article  Google Scholar 

  57. Zhu QH, Peng XH, Huang TQ, Xie ZB, Holden NM (2014) Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 24(6):699–708. https://doi.org/10.1016/S1002-0160(14)60057-6

    Article  Google Scholar 

  58. Zhu WH, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomics sequences. Nucleic Acids Res 38(12):15. https://doi.org/10.1007/978-1-4899-7478-5_440

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous reviewers for helpful comments on previous versions of this manuscript.

Funding

This work was jointly funded by the National Key Research and Development Project (2017YFD0200100, 2018YFD0800800).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenan Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Zhihong Xu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Long, Z., Min, W. et al. Metagenomic analysis reveals the effects of cotton straw–derived biochar on soil nitrogen transformation in drip-irrigated cotton field. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-10267-4

Download citation

Keywords

  • Cotton straw–derived biochar
  • Soil N transform
  • Metagenomic analysis
  • Microbial composition
  • N metabolic pathway
  • Drip-irrigated cotton field