Skip to main content

Advertisement

Log in

Evaluating the size distribution characteristics and sources of atmospheric trace elements at two mountain sites: comparison of the clean and polluted regions in China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Size-resolved trace metal concentrations at two background sites were assessed during a 1-year observation campaign, with the measurements performed in parallel at two mountain sites, where Mt. Dinghu (DHS) located in the rural region of Pearl River Delta (PRD) and Mt. Gongga (GGS) located in the Tibetan Plateau region. In total, 15 selected trace elements (Mg, Al, K, V, Mn, Fe, Cu, Zn, As, Mo, Ag, Cd, Ba, Tl, and Pb) in aerosol samples were determined using inductively coupled plasma mass spectrometry (ICPMS). The major metals in these two mountain sites were Fe, K, Mg, and Ca with concentrations ranging between 241 and 1452 ng/m3, 428 and 1351 ng/m3, 334 and 875 ng/m3, and 376 and 870 ng/m3, respectively, while the trace metals with the lowest concentrations were Mo, Ag, Cd, and Tl with concentrations lower than 4 ng/m3 in DHS and 2 ng/m3 in GGS. The pronounced seasonal variability in the trace elements was observed in DHS, with lower concentrations in spring and summer and relatively high in winter and autumn, whereas seasonal variance of trace elements is hardly observed in Mt. Gongga. The size distribution pattern of crustal elements of Al, Mg, K, Ba, and Fe was quite similar in DHS and GGS, which were mainly found in coarse particles peaked at 4.7–5.8 μm. In addition, V, Mo, Ag, and Tl were also concentrated in coarse particles, although the high enrichment factor (EF > 100) of which suggested anthropogenic origin, whereas trace metals of Cd, Mn, Zn, As, Cu, and Pb concentrated in fine mode particles. Specifically, these trace metals peak at approximately 1.5 μm in DHS, while those in GGS peaked at diameter smaller than 0.3 μm, indicating the responsible for long-range transport from the far urban and industrialized areas. Multivariate receptor model combined with the enrichment factor results demonstrated that the trace elemental components at these two background sites were largely contributed from the fossil fuel combustion (55.4% in DHS and 44.0% in GGS) and industrial emissions factors (20.1% vs. 26.5%), which are associated with long distance transport from the coastal area of Southeast China and the Northwestern India, respectively, as suggested by the backward air mass trajectory analysis. Local sources from soil dust contributed a minor variance for trace elements in DHS (9.7%) and GGS (13.8%), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the corresponding authors on request.

References

  • Alam K, Blaschke T, Madl P, Mukhtar A, Hussain M, Trautmann T, Rahman S (2011) Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J Environ Monit 13:1944–1952

    CAS  Google Scholar 

  • Alexander B, Park RJ, Jacob DJ, Gong S (2009) Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget. J Geophys Res 114:D02309. https://doi.org/10.1029/2008jd010486

    Article  Google Scholar 

  • Allen AG, Nemitz E, Shi JP, Harrison RM, Greenwood JC (2001) Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos Environ 35:4581–4591

    CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    CAS  Google Scholar 

  • Beddows DCS, Donovan RJ, Harrison RM, Heal MR, Kinnersley RP, King MD, Nicholson DH, Thompson KC (2004) Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time of flight mass spectrometry. J Environ Monit 6:124–133

    CAS  Google Scholar 

  • Cheng K, Wang Y, Tian H, Gao X, Zhang Y, Wu X, Zhu C, Gao J (2015) Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ Sci Technol 49:1206–1214. https://doi.org/10.1021/es5037332

    Article  CAS  Google Scholar 

  • Clements AL, Buzcu-Guven B, Fraser MP, Kulkarni P, Chellam S (2013) Role of particulate metals in heterogeneous secondary sulfate formation. Atmos Environ 75:233–240

    CAS  Google Scholar 

  • Cong Z, Kang S, Liu X, Wang G (2007) Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmos Environ 41:1180–1187

    CAS  Google Scholar 

  • Dall’Osto M, Querol X, Amato F, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Chiari M (2013) Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS–diurnal variations and PMF receptor modeling. Atmos Chem Phys 13:4375–4392

    Google Scholar 

  • Deguillaume L, Leriche M, Monod A, Chaumerliac N (2004) The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry. Atmos Chem Phys 4:95–110

    CAS  Google Scholar 

  • Deng C, Zhuang G, Huang K, Li J, Zhang R, Wang Q, Liu T, Sun Y, Guo Z, Fu JS, Wang Z (2011) Chemical characterization of aerosols at the summit of Mountain Tai in Central East China. Atmos Chem Phys 11:7319–7332. https://doi.org/10.5194/acp11-7319-2011

    Article  Google Scholar 

  • Đorđević D, Stortini AM, Relić D, Mihajlidi-Zelić A, Huremović J, Barbante C, Gambaro A (2014) Trace elements in size-segregated urban aerosol in relation to the anthropogenic emission sources and the resuspension. Environ Sci Pollut Res 21:10949–10959

    Google Scholar 

  • Draxler, R. R. and Rolph, G. D. 2014. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, available at: http://www.arl.noaa.gov/HYSPLIT.php Accessed 1 Feb 2015. NOAA air resources laboratory, College Park

  • Duan J, Tan J (2013) Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos Environ 74:93–101

    CAS  Google Scholar 

  • Duan J, Tan J, Wang S, Hao J, Chai F (2012) Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. J Environ Sci 24:87–94

    CAS  Google Scholar 

  • Fang GC, Huang YL, Huang JH (2010) Study of atmospheric metallic elements pollution in Asia during 2000-2007. J Hazard Mater 180:115–121. https://doi.org/10.1016/j.jhazmat.2010.03.120

    Article  CAS  Google Scholar 

  • Fomba KW, Müller K, van Pinxteren D, Herrmann H (2013) Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands. Atmos Chem Phys 13:4801–4814. https://doi.org/10.5194/acp13-4801-2013

    Article  Google Scholar 

  • Fomba KW, van Pinxteren D, Müller K, Spindler G, Herrmann H (2018) Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmos Environ 2018(176):60–70

    Google Scholar 

  • Fu B, Li S, Yu X, Yang P, Yu G, Feng R, Zhuang X (2010) Chinese ecosystem research network: progress and perspectives. Ecol Complex 7:225–233

    Google Scholar 

  • Guo J, Tilgner A, Yeung C, Wang Z, Louie PK, Luk CW, Xu Z, Yuan C, Gao Y, Poon S, Herrmann H, Lee S, Lam KS, Wang T (2014) Atmospheric peroxides in a polluted subtropical environment: seasonal variation, sources and sinks, and importance of heterogeneous processes. Environ Sci Technol 48:1443–1450

    CAS  Google Scholar 

  • Harris E, Sinha B, van Pinxteren D, Tilgner A, Fomba KW, Schneider J, Roth A, Gnauk T, Fahlbusch B, Mertes S, Lee T, Collett J, Foley S, Borrmann S, Hoppe P, Herrmann H (2013) Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science 340:727–730

    CAS  Google Scholar 

  • Heal MR, Hibbs LR, Agius RM, Beverland IJ (2005) Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmos Environ 39:1417–1430

    CAS  Google Scholar 

  • Hindman EE, Upadhyay BP (2002) Air pollution transport in the Himalayas of Nepal and Tibet during the 1995-1996 dry season. Atmos Environ 36:727–739

    CAS  Google Scholar 

  • Huang X, Liu Z-R, Liu J, Hu B, Wen T, Tang G, Zhang J, Wu F, Ji D, Wang L, Wang Y (2017) Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region. China Atmos Chem Phys 17:12941–12962

    CAS  Google Scholar 

  • Jakob A, Stucki S, Kuhn P (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ Sci Technol 29:2429–2436

    CAS  Google Scholar 

  • Jing H, Li Y, Zhao J, Li B, Sun J, Chen R, Gao Y, Chen C (2014) Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environ Pollut 192:204–211

    CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    CAS  Google Scholar 

  • Kang S, Mayewski PA, Qin D, Yan Y, Hou S, Zhang D, Ren J, Kruetz K (2002) Glaciochemical records from a Mount Everest ice core: relationship to atmospheric circulation over Asia. Atmos Environ 36(21):3351–3361

    CAS  Google Scholar 

  • Lawrence MG (2011) Atmospheric science: Asia under a high-level brown cloud. Nat Geosci 4:352–353

    CAS  Google Scholar 

  • Lee CSL, Li X, Zhang G, Li J, Ding A, Wang T (2007) Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China-evidence of the long-range transport of air contaminants. Atmos Environ 41:432–447

    CAS  Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean Experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    CAS  Google Scholar 

  • Li W, Chen G, Wang K, Sun Y, Li T (2005) Observation of atmosphere background on Mt. Gongga. J Mt Sci 23(6):756–758

    Google Scholar 

  • Li T, Wang Y, Li WJ, Chen JM, Wang T, Wang WX (2015) Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing. Atmos Chem Phys 15:8987–9002

    CAS  Google Scholar 

  • Li M, Liu Z-R, Chen J, Huang X, Liu J, Xie Y, Hu B, Xu Z, Zhang Y, Wang Y (2019) Characteristics and source apportionment of metallic elements in PM2.5 at urban and suburban sites in Beijing: implication of emission reduction. Atmosphere 10:105. https://doi.org/10.3390/atmos10030105

    Article  CAS  Google Scholar 

  • Liu Z, Wang Y, Liu Q, Liu L, Zhang D (2011) Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at mount Dinghu in autumn season. Environ Sci 32:3160–3166

    Google Scholar 

  • Liu Y, Hong Y, Fan Q et al (2017) Source-receptor relationships for PM2.5 during typical pollution episodes in the Pearl River Delta city cluster, China. Sci Total Environ 596–597:194–206

    Google Scholar 

  • Liu Z-R, Gao W, Yu Y, Hu B, Xin J, Sun Y, Wang L, Wang G, Bi X, Zhang G et al (2018) Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmos Chem Phys 18:8849–8871

    CAS  Google Scholar 

  • Liu Z, Hu B, Ji D, Cheng M, Gao W, Shi S, Xie Y, Yang S, Gao M, Fu H, Chen J, Wang Y (2019) Characteristics of fine particle explosive growth events in Beijing, China: seasonal variation, chemical evolution pattern and formation mechanism. Sci Total Environ 687:1073–1086

    CAS  Google Scholar 

  • Ma L, Dadashazar H, Braun RA, MacDonald AB, Aghdam MA, Maudlin LC, Sorooshian A (2019) Size-resolved characteristics of water-soluble particulate elements in a coastal area: source identification, influence of wildfires, and diurnal variability. Atmos Environ 206:72–84

    CAS  Google Scholar 

  • Mason B, Morre CB (1982) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • Mateos AC, Amarillo AC, Carreras HA, Gonzalez CM (2018) Land use and air quality in urban environments: human health risk assessment due to inhalation of airborne particles. Environ Res 161:370–380

    CAS  Google Scholar 

  • Moffet RC, Desyaterik Y, Hopkins RJ, Tivanski AV, Gilles MK, Wang Y, Shutthanandan V, Molina LT, Abraham RG, Johnson KS, Mugica V, Molina MJ, Laskin A, Prather KA (2008) Characterization of aerosols containing Zn, Pb, and cl from an industrial region of Mexico City. Environ Sci Technol 42(19):7091–7097

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Amato F, Pey J, Pandolfi M, Kuenzli N, Bouso L, Rivera M, Gibbons W (2010) Effect of fireworks events on urban background trace metal aerosol concentrations: is the cocktail worth the show? J Hazard Mater 183:945–949

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Reche C, Cusack M, Amato F, Pandolfi M, Pey J, Richard A, Prévôt ASH, Furger M, Gibbons W (2014) Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos Chem Phys 11:9415–9430

    Google Scholar 

  • Ny MT, Lee B-K (2010) Size distribution and source identification of airborne particulate matter and metallic elements in a typical industrial city. Asian J Atmos Environ 4:9–19

    Google Scholar 

  • Pan Y, Tian S, Li X, Sun Y, Li Y, Wentworth GR, Wang Y (2015) Trace elements in particulate matter from metropolitan regions of Northern China: sources, concentrations and size distributions. Sci Total Environ 537:9–22

    CAS  Google Scholar 

  • Pérez N, Pey J, Castillo S, Alastuey A, Querol X, Viana M (2008) Interpretation of the variability of regional background aerosols in the Western Mediterranean. Sci Total Environ 407:527–540

    Google Scholar 

  • Pey J, Pérez N, Castillo S, Viana M, Moreno T, Pandolfi M, López-Sebastián JM, Alastuey A, Querol X (2009) Geochemistry of regional background aerosols in the Western Mediterranean. Atmos Res 94:422–435

    CAS  Google Scholar 

  • Polidori A, Cheung KL, Arhami M, Delfino RJ, Schauer JJ, Sioutas C (2009) Relationships between size-fractionated indoor and outdoor trace elements at four retirement communities in southern California. Atmos Chem Phys 9:4521–4536

    CAS  Google Scholar 

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231

    CAS  Google Scholar 

  • Ragosta M, Caggiano R, Macchiato M, Sabia S, Trippetta S (2008) Trace elements in daily collected aerosol: level characterization and source identification in a four-year study. Atmos Res 89:206–217

    CAS  Google Scholar 

  • Rizzioa E, Giaveria G, Arginellib D, Ginib L, Profumoa A, Gallorinia M (1999) Trace elements total content and particle sizes distribution in the air particulate matter of a rural-residential area in north Italy investigated by instrumental neutron activation analysis. Sci Total Environ 226:47–56

    Google Scholar 

  • Salma I, Maenhaut W, Záray G (2002) Comparative study of elemental mass size distributions in urban atmospheric aerosol. J Aerosol Sci 33:339–356

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Shah P, Strezov V, Stevanov C, Nelson PF (2007) Speciation of arsenic and selenium in coal combustion products. Energy Fuel 21:506–512. https://doi.org/10.1021/ef0604083

    Article  CAS  Google Scholar 

  • Shao J, Chen Q, Wang Y, Lu X, He P, Sun Y, Shah V, Martin RV, Philip S, Song S, Zhao Y, Xie Z, Zhang L, Alexander B (2019) Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmos Chem Phys 19:6107–6123

    CAS  Google Scholar 

  • Song F, Gao Y (2011) Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area. Atmos Environ 45:6714–6723

    CAS  Google Scholar 

  • Sorooshian A, Csavina J, Shingler T, Dey S, Brechtel FJ, Sáez AE, Bettertonet EA (2012) Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health. Environ Sci Technol 46:9473–9480

    CAS  Google Scholar 

  • Tian H, Cheng K, Wang Y, Zhao D, Lu L, Jia W, Hao J (2012a) Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmos Environ 50:157–163

    CAS  Google Scholar 

  • Tian H, Gao J, Lu L, Zhao D, Cheng K, Qiu P (2012b) Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environ Sci Technol 46:10364–10371

    CAS  Google Scholar 

  • Tian H, Liu K, Zhou J, Lu L, Hao J, Qiu P, Gao J, Zhu C, Wang K, Hua S (2014) Atmospheric emission inventory of hazardous trace elements from China’s coal-fired power plants-temporal trends and spatial variation characteristics. Environ Sci Technol 48:3575–3582

    CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius A, Szidat S, Prevot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Wang X, Sato T, Xing B, Tamamura S, Tao S (2005) Source identification, size distribution and indicator screening of airborne trace metals in Kanazawa, Japan. Aerosol Science 36:197–210

    CAS  Google Scholar 

  • Wang Z, Sorooshian A, Prabhakar G, Coggon M, Jonsson H (2014) Impact of emissions from shipping, land, and the ocean on stratocumulus cloud water elemental composition during the 2011 E-PEACE field campaign. Atmos Environ 89:570–580

    CAS  Google Scholar 

  • Wang J, Pan Y, Tian S, Chen X, Wang L, Wang Y (2016) Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmos Res 168:191–204

    CAS  Google Scholar 

  • Weiss-Penzias P, Sorooshian A, Coale K, Heim W, Crosbie E, Dadashazar H, MacDonald AB, Wang Z, Jonsson H (2018) Aircraft measurements of total mercury and monomethyl mercury in summertime marine stratus cloud water from coastal California, USA. Environ Sci Technol 52:2527–2537

    CAS  Google Scholar 

  • Xie Y, Liu Z-R, Wen T, Huang X, Liu J, Tang G, Yang Y, Li X, Shen R, Hu B, Wang Y (2019) Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: impact of primary emissions and secondary formation. Sci Total Environ 677:215–229

    CAS  Google Scholar 

  • Xu HM, Cao JJ, Ho KF, Ding H, Han YM, Wang GH, Chow JC, Watson JG, Khol SD, Qiang J, Li WT (2012) Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmos Environ 46:217–224

    CAS  Google Scholar 

  • Xue YH, Wu JH, Feng YC, Dai L, Bi XH, Li XA, Zhu T, Tang SB, Chen MF (2010) Source characterization and apportionment of PM10 in Panzhihua. China Aerosol Air Qual Res 10:367–377

    CAS  Google Scholar 

  • Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y, Duan F, Chen G, Zhao Q (2011) Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys 11:5207–5219. https://doi.org/10.5194/acp-11-5207-2011

    Article  CAS  Google Scholar 

  • Zhang Q, Shen Z, Cao J, Ho KF, Zhang R, Bie Z, Chang H, Liu S (2014a) Chemical profiles of urban fugitive dust over Xi'an in the south margin of the Loess Plateau, China. Atmos Pollut Res 5:421–430

    CAS  Google Scholar 

  • Zhang R, Cao J, Tang Y, Arimoto R, Shen Z, Wu F, Han Y, Wang G, Zhang J, Li G (2014b) Elemental profiles and signatures of fugitive dusts from Chinese deserts. Sci Total Environ 472:1121–1129

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ze Meng and Keqin Wang for the operation of the sampling site and their contributions to the field sampling work. We also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this publication.

Funding

This study was supported by the Ministry of Science and Technology of China (2 017YFC0210000), National Natural Science Foundation of China (41705110) and National Earth System Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zirui Liu or Yuesi Wang.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hu, B., Yang, Y. et al. Evaluating the size distribution characteristics and sources of atmospheric trace elements at two mountain sites: comparison of the clean and polluted regions in China. Environ Sci Pollut Res 27, 42713–42726 (2020). https://doi.org/10.1007/s11356-020-10213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10213-4

Keywords

Navigation