Skip to main content
Log in

CO2 from waste to resource by developing novel mixed matrix membranes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mixed matrix membranes (MMMs) were fabricated by the hydrothermal synthesis of ordered mesoporous KIT-6 type silica and incorporating in polyimide (P84). KIT-6 and MMMs were characterized to evaluate morphology, thermal stability, surface area, pore volume, and other characteristics. SEM images of synthesized MMMs and permeation data of CO2 suggested homogenous dispersion of mesoporous fillers and their adherence to the polymer matrix. The addition of KIT-6 to polymer matrix improved the permeability of CO2 due to the increase in diffusivity through porous particles. The permeability was 3.2 times higher at 30% loading of filler. However, selectivity showed a slight decrease with the increase in filler loadings. The comparison of gas permeation results of KIT-6 with the well-known MCM-41 revealed that KIT-6 based MMMs showed 14% higher permeability than that of MMMs composed of mesoporous MCM-41. The practical commercial viability of synthesized membranes was examined under different operating temperatures and mixed gas feeds. Mesoporous KIT-6 silica is an attractive additive for gas permeability enhancement without compromising the selectivity of MMMs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali M, Aslam M, Khan A, Gilani MA, Khan AL (2019) Mixed matrix membranes incorporated with sonication-assisted ZIF-8 nanofillers for hazardous wastewater treatment. Environ Sci Pollut Res:1–11

  • Bano S, Tariq SR, Ilyas A, Aslam M, Bilad MR, Nizami A-S et al (2019) Synergistic solution of CO2 capture by novel lanthanide-based MOF-76 yttrium nanocrystals in mixed-matrix membranes. Energy Environ 0958305X19882413

  • Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IF (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768

    Article  CAS  Google Scholar 

  • Basu S, Cano-Odena A, Vankelecom IF (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40

    Article  CAS  Google Scholar 

  • Bera B, Das JK, Das N (2018) Mesoporous silica based composite membrane formation by in-situ cross-linking of phenol and formaldehyde at room temperature for enhanced CO2 separation. Microporous Mesoporous Mater 256:177–189

    Article  CAS  Google Scholar 

  • Coronas J, Santamaria J (2004) State-of-the-art in zeolite membrane reactors. Top Catal 29:29–44

    Article  CAS  Google Scholar 

  • Ghalei B, Isfahani AP, Sadeghi M, Vakili E, Jalili A (2018) Polyurethane-mesoporous silica gas separation membranes. Polym Adv Technol 29:874–883

    Article  CAS  Google Scholar 

  • Hussain M, Fino D, Russo N (2012) N2O decomposition by mesoporous silica supported Rh catalysts. J Hazard Mater 211:255–265

    Article  Google Scholar 

  • Kentish SE, Scholes CA, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66

    Article  Google Scholar 

  • Khan AL, Klaysom C, Gahlaut A, Li X, Vankelecom IF (2012) SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO 2 separations. J Mater Chem 22:20057–20064

    Article  CAS  Google Scholar 

  • Kim S, Pechar TW, Marand E (2006) Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339

    Article  CAS  Google Scholar 

  • Lee PS, Hong D, Cha G, An H, Moon S, Seong M, Chang B, Lee J, Kim J (2019) Mixed matrix membranes incorporated with three-dimensionally ordered mesopore imprinted (3Dom-i) zeolite. Sep Purif Technol 210:29

    Article  CAS  Google Scholar 

  • Li Y, Chung T-S, Huang Z, Kulprathipanja S (2006) Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation. J Membr Sci 277:28–37

    Article  CAS  Google Scholar 

  • Liu Y, Shi J, Chen J, Ye Q, Pan H, Shao Z, Shi Y (2010) Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater 134:16–21

    Article  CAS  Google Scholar 

  • Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Prepared by working Group III of the Intergovernmental Panel on Climate Change 442. Cambridge Univ. Press

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

  • Sang W, Ching OP (2017) Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation. AIP Conf Proc 1891:020147

    Article  Google Scholar 

  • Sanz R, Calleja G, Arencibia A, Sanz-Perez E (2010) CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl Surf Sci 256:5323–5328

    Article  CAS  Google Scholar 

  • Saqib S, Rafiq S, Chawla M, Saeed M, Muhammad N, Khurram S et al (2018) Facile CO2 separation in composite membranes. Chem Eng Technol

  • Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    Article  CAS  Google Scholar 

  • Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65

    Article  Google Scholar 

  • Tahir Z, Aslam M, Gilani MA, Bilad MR, Anjum MW, Zhu L-P, Khan AL (2019) SO3H functionalized UiO-66 nanocrystals in polysulfone based mixed matrix membranes: synthesis and application for efficient CO2 capture. Sep Purif Technol 224:524–533

    Article  CAS  Google Scholar 

  • Wang L, Qi T, Zhang Y, Chu J (2006) Morphosynthesis route to large-pore SBA-15 microspheres. Microporous Mesoporous Mater 91:156–160

    Article  CAS  Google Scholar 

  • Wang L, Han X, Li J, Qin L, Zheng D (2012) Preparation of modified mesoporous MCM-41 silica spheres and its application in pervaporation. Powder Technol 231:63–69

    Article  CAS  Google Scholar 

  • Wang J, Li Y, Zhang Z, Hao Z (2015) Mesoporous KIT-6 silica–polydimethylsiloxane (PDMS) mixed matrix membranes for gas separation. J Mater Chem A 3:8650–8658

    Article  CAS  Google Scholar 

  • Zornoza B, Irusta S, Tellez C, Coronas J (2009) Mesoporous silica sphere− polysulfone mixed matrix membranes for gas separation. Langmuir 25:5903–5909

    Article  CAS  Google Scholar 

Download references

Funding

Dr. A. L. Khan would like to thank the Higher Education Commission (HEC), Pakistan, for their grant under NRPU Project # 3514. Dr. M. Hussain is grateful to Higher Education Commission (HEC), Pakistan, for the funding under TDF Project (TDF02-011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asim Laeeq Khan, Abdul-Sattar Nizami or Murid Hussain.

Additional information

Editorial Responsibility: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakoor, A., Khan, A.L., Akhter, P. et al. CO2 from waste to resource by developing novel mixed matrix membranes. Environ Sci Pollut Res 28, 12397–12405 (2021). https://doi.org/10.1007/s11356-020-10044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10044-3

Keywords

Navigation