Skip to main content

Geochemical contamination in the Densu Estuary, Gulf of Guinea, Ghana

A Correction to this article was published on 22 August 2020

This article has been updated

Abstract

Chemical contaminants are released from mining, domestic and industrial effluents into an aquatic environment. Sediments (n = 10) were collected with an Eckman grab at ten stations in the Densu Estuary for ecological risk assessment. The spatial distribution of organic characteristics and ecological risk of metals—zinc, lead, copper, mercury, iron, and manganese in sediment—were analyzed using standard methods. The organic parameters occurred in the ranges, as follows: % C, 0.76 to 2.05, % TN, 0.06 to 0.015; % TP, 0.44 to 1.38; and C/N, 12.31 to 34.81. The ranges of metal concentrations (mg/kg) were as follows: Fe, 201.10 to 720.90; Mn, 40.10 to 152.70; Zn, 7.3 to 158.3; Pb, 1.9 to 84.7; Cu 3.4 to 23.0; and Hg, 0.01 to 0.05. The mean concentration of metals in the sediment were Fe > Mn > Pb > Zn > Cu > Hg. The highest mean concentration of Fe suggested redox conditions in the Densu Estuary. There is a low contamination factor (CF) for five metals (Zn, Hg, Fe, Cu, and Mn) (CF < 1) to high contamination of Pb (3 < CF ≤ 6). The average Pb concentration was above local and geological backgrounds, suggesting an anthropogenic source of pollution from industrial and domestic effluents and agrochemicals. The sediment was extremely enriched by Pb (EF > 50) with a positive index of geoaccumulation (0 < Igeo ≤ 2) than other metals. There is considerable to a very high degree of contamination (DC) (3 ≤ DC ≥ 6) of metals in the sediment of Densu Estuary. The potential ecological risk index (≤ 40 PERI < 80) suggested a very low to moderate ecological risk of metal pollution. The study provides baseline knowledge on geochemical contamination in tropical estuarine systems for the development of effective chemical control strategies towards sustainable management of coastal waters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 22 August 2020

    The correct equations are presented below.

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    CAS  Google Scholar 

  • Abreu IM, Cordeiro RC, Soares-Gomes A, Abessa DMS, Maranho LA, Santelli RE (2016) Ecological risk evaluation of sediment metals in a tropical Eutrophic Bay, Guanabara Bay, Southeast Atlantic. Mar Pollut Bull 109:435–445

    CAS  Google Scholar 

  • Ackerman F (1980) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ Technol Lett 1:518–527

    Google Scholar 

  • Addo AA 2017: Assessing heavy metal load of fish and shorebirds in the Densu Delta, Ramsar site, Ghana. MPhil in Marine Science Thesis, University of Ghana, Accra, 139 pp.

  • Aiman U, Manhmood A, Waheed S, Malik RN (2016) Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Labore city, Pakistan. Chemosphere 144

  • Allen GP (1971): Relationship between grain size parameter distribution and current patterns

  • Anderson NH (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24:351–377

    Google Scholar 

  • Angelidis MO, Aloupi M (2000) Geochemical study of coastal sediments influenced by a river-transported pollution: Southern Evoikos Gulf, Greece. Mar Pollut Bull 40:77–82

    CAS  Google Scholar 

  • Armah AK, Darpaah GA, Wiafe G (1997) Managing the Coast of Ghana: problems and options. In: Evans SM, Vanderpuye CJ, Armah AK (eds) The coastal zone of Africa: problems and management. Penshaw Press, the Lawns, p 426

    Google Scholar 

  • Athar M, Vohora SB (2001) Heavy metals and environment. New Age International, New Delhi

    Google Scholar 

  • Attua EM, Ayamaga J, Pabi O (2014) Relating use and land cover to surface water quality in the Densu River basin, Ghana. Int J River Basin Manage 12:57–68

    Google Scholar 

  • Avramidisa P, Nikolaoua K, Bekiari V (2015) Total organic carbon and total nitrogen in sediments and soils: a comparison of the wet oxidation – titration method with the combustion-infrared method. Agric Agric Sci Procedia 4:425–430

    Google Scholar 

  • Ball DF (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci 15:84–92

    CAS  Google Scholar 

  • Balls PW, Hull S, Miller BS, Pirie JM, Proctor W (1997) Trace metal in Scottish estuarine and coastal sediments. Mar Pollut Bull 34:42–50

    CAS  Google Scholar 

  • Baptista Neto JA, Smith BJ, Mc Allister JJ (2000) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ Pollut 109:1–9

    CAS  Google Scholar 

  • Barbieri M (2016) The importance of enrichment factor (EF) and geoaccumulation (Igeo) to evaluate the soil contamination. J Geol Geophys 5:1–4

    Google Scholar 

  • Barcellos RL, Braga ES, Furtado VV, Berbel GBB (2014) Sedimentary and geochemical aspects of a refinery impacted coastal area: a case study of the Todos os Santos Bay (Bahia, Brazil). Int J Geosci 5:1451–1467

    Google Scholar 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in the arid zone using a simple loss-on-ignition method. Commun Soil Sci Plant Anal 20:1675–1695

    Google Scholar 

  • Benhaddya ML, Hadjel M (2013) Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environ Earth Sci 71:1473–1486

    Google Scholar 

  • Benitez-Nelson CR, Buesseler KO (1999) Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398:502–505

    CAS  Google Scholar 

  • Berry JW, Osgood DW, St. John PA (1974) Chemical villains-a biological pollution. St. Louis, The C.V Mosby Company, p 189

    Google Scholar 

  • Bhutiani R, Kulkarni DB, Khanna DR, Gautam A (2017) Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy Ecol Environt 2:155–167

    Google Scholar 

  • Bianchi SR, Miyazawa M, de Oliveira EL, Pavan MA (2008) Relationship between the mass of organic matter and carbon in the soil. Braz Arch Biol Technol 51:263–269

    CAS  Google Scholar 

  • Biney CA, Amuzu AT, Calamari D, Kaba N, Mbome I, Naeve PBO, Ochumba O, Osibanjo V, Radegonde V, Saad MAH (1994) Review of heavy metals in the African aquatic environment. Ecotoxicol Environ Saf 28:134–159

    CAS  Google Scholar 

  • Biney CA, Asmah R (2010) The effect of physicochemical parameters on speciation of trace metals in sediments from inland and coastal waters of Ghana. Afr J Aquat Sci 25:299–305

    Google Scholar 

  • Blomqvist S (1990) Sampling performance of Ekman grabs - in situ observations and design improvements. Hydrobiologia 206:245–254

    Google Scholar 

  • Boeckx RL (1986) Lead poisoning in children. Anal Chem 58:274A–287A

    CAS  Google Scholar 

  • Boesch DF (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 25:744–758

    Google Scholar 

  • Boszke L, Sobczynski T, Kowalski A (2004) Distribution of mercury and other heavy metals in bottom sediments of the middle Odra river (Germany/Poland). Pol J Environ Stud 13:495–502

    CAS  Google Scholar 

  • Botwe BO, Alfonso L, Nyarko E, Lens PNL (2017) Metal distribution and fractionation in surface sediments of coastal Tema harbour (Ghana) and its ecological implications. Environ Earth Sci 76:514

    Google Scholar 

  • Bowen HJM (1966) Trace elements in biogeochemistry. Advances in ecological research. Academic Press Inc, London, p 241

    Google Scholar 

  • Brady NC (ed) (1974) Organic matter of mineral soils. The nature and properties of soils. Macmillan Publishing Co, New York, pp 137–163

    Google Scholar 

  • Brannon JM, Plumb JRH, Smith JI (1980) Long-term release of heavy metals from sediments. In: Baker RA (ed) Contaminants and sediments. Ann Arbor Science Publisher, Inc, Ann Arbor, pp 221–266

    Google Scholar 

  • Brookfield ME, Ahlbrandt TS (editors), 1983: Eolian sediments and processes. Developments in sedimentology, 8. Elsevier

  • Burton JGA (2002) Sediment quality criteria in use around the world. Limnology 3:65–75

    CAS  Google Scholar 

  • CCME 1995: Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life, Canadian Council of Ministers of the Environment

  • CCME (1999) Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Cheng QL, Lou GY, Huang WH, Li XD (2017) Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, eastern China. Environ Sci Pollut Res 24:17446–17454

    CAS  Google Scholar 

  • Cibic T, Acquavita A, Aleffi F, Bettoso N, Blasutto O, De Vittor C, Falconi C, Falomo J, Faresi L, Predonzani S, Tamberlich F, Umani FS (2008) Integrated approach to sediment pollution: a case study in the Gulf of Trieste. Mar Pollut Bull 56:1650–1667

    CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006): PRIMER v6: User manual/tutorial. PRIMER-E. 1992, Plymouth Marine Laboratory, Plymouth

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110:11–23

    CAS  Google Scholar 

  • Conceiçao VM, Torronteras R, Córdoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ-specific antioxidant responses. Ecotoxicol Environ Saf 78:212–217

    Google Scholar 

  • Costa ES, Grilo CF, Wolff GA, Thompson A, Figueira RCL, Neto RR (2015) Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of southern Brazil. Mar Pollut Bull 92:259–268

    CAS  Google Scholar 

  • Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems - zoobenthic species influence energy flows and nutrient cycling. Bioscience 49:119–127

    Google Scholar 

  • da Silveira Fiori C, de Castro Rodrigues AP, Santelli RE, Cordeiro RC, Carvalheira RG, Araújo PC, Castilhos ZC, Bidone ED (2013) Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janeiro State, southeastern Brazil. Geochim Bras 27:24–36

    Google Scholar 

  • Davies OA, Abowei JFN (2009) Sediment quality of lower reaches of Okpoka Creek, Niger Delta, Nigeria. Eur J Sci Res 26:437–442

    Google Scholar 

  • Debrah C (1999) Speciation of heavy metals in waters and sediment from the Densu Basin. University of Ghana, Legon-Accra, p 155

    Google Scholar 

  • Demirak A, Yilmaz F, Tuna A, Ozdemir N (2006) Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 63:1451–1458

    CAS  Google Scholar 

  • Denutsui D, Akiti T, Osae S, Dampare SB, Tutu AO, Blanckson-Arthur S, Ayivor JE, Adomako D (2011) Assessment of pollution into the Densu Delta wetland using instrumental neutron activation analysis. Res J Environ Earth Sci 3:772–781

    CAS  Google Scholar 

  • Diagomanolin V, Farhang M, Ghazi-Khansari M, Jafarzadeh N (2004) Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicol Lett 151:63–68

    CAS  Google Scholar 

  • Dimitrakakis E, Hahladakis J, Gidarakos E (2014) The “sea diamond” shipwreck: environmental impact assessment in the water column and sediments of the wreck area. Int J Environ Sci Technol 11:1421–1432

    CAS  Google Scholar 

  • Dittmar T, Lara RJ (2001) Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in North Brazil. Estuar Coast Shelf Sci 52:249–259

    CAS  Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20

  • Dragovi S, Mihailovi N, Gaji B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–495

    Google Scholar 

  • Edgell K 1989: USEPA method study 37 SW-846 method 3050 acid digestion of sediments, sludges and soils, US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, USA

  • Elliott M (2003) Biological pollutants and biological pollution—an increasing cause for concern. Mar Pollut Bull 46:275–280

    CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Google Scholar 

  • Ergin M, Saydam C, Basturk O, Erdem E, Yoruk R (1991) Metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chem Geol 91:269–285

    CAS  Google Scholar 

  • Ernst MD (2004) Permutation methods: a basis for exact inference. Stat Sci 19:676–685

    Google Scholar 

  • Fianko JR, Osae S, Adomako D, Adotey DK, Serfor-Armah Y (2007) Assessment of heavy metal pollution of the Iture estuary in the central region of Ghana. Environ Monit Assess 131:467–473

    CAS  Google Scholar 

  • Fianko JR, Osae S, Achel D (2009) Impact of anthropogenic activities on the Densu River in Ghana. Water Environ J 23:229–234

    CAS  Google Scholar 

  • Fine JS (2000) Iron poisoning. Curr Probl Pediatr 30:71–90

    CAS  Google Scholar 

  • Finger D, Schmid M, Wuest A (2006) Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resour Res 42:1–20

    Google Scholar 

  • Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin

    Google Scholar 

  • Förstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer-Verlag, Berlin, 841 pp

    Google Scholar 

  • Förstner U (1990) Inorganic sediment chemistry and elemental speciation. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publisher, Inc, Chelsea, MI, pp 61–105

    Google Scholar 

  • Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: an interdisciplinary approach. Lakes Reserv Res Manag 9:25–40

    Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    CAS  Google Scholar 

  • Frangipane G, Pistolato M, Molinaroli E, Guerzoni S, Tagliapietra D (2009) Comparison of loss on ignition and thermal analysis stepwise methods for determination of the sedimentary organic matter. Aquat Conserv Mar Freshwat Ecosyst 19:24–33

    Google Scholar 

  • Friberg LP, Nordberg GF, Jellstorm K (1974) Cadmium in the environment. CRC Press, Cleveland, p 248

    Google Scholar 

  • García EM, Cruz-Motta JJ, Farina O, Bastidas C (2008) Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela. Cont Shelf Res 28:2757–2766

    Google Scholar 

  • Garringa LJA (1990) Aerobic degradation of organic matter and the mobility of Cu, Cd, Ni, Pb, Zn, Fe and Mn in marine sediment slurries. Mar Chem 29:355–374

    Google Scholar 

  • Gaur VK, Sanjay KG, Pandey SD, Gopal K, Mısra V (2005) Distribution of heavy metals in sediment and water of River Gomti. Environ Monit Assess 102:419–433

    CAS  Google Scholar 

  • Gee GW, Bauder JW (Editors), 1986: Particle-size analysis. Methods of soil analysis part 1: physical and mineralogical methods. Soil Science Society of America, Inc, and American Society of Agronomy, Inc., Madison, Wisconsin, USA, 383–410 pp.

  • Gheorghe S, Stoica C, Vasile GG, Nita-Lazar M, Stanescu E, Lucaciu IE (2017): Metals toxic effects in aquatic ecosystems: modulators of water quality. In: Tutu H (editor), Water quality. IntechOpen, pp. 61–89

  • Ghrefat HA, Abu-Rukah Y, Rosen MA (2011) Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ Monit Assess 178:95–10

    CAS  Google Scholar 

  • Giesy JP, Hoke RA (1990) Freshwater sediment quality criteria: toxicity bioassessment. In: Baudo R, Giesy JP, Muntao M (eds) Sediment chemistry and toxicity of in-place pollutants. Lewis Publishers, Ann Arbor, p 391

    Google Scholar 

  • Gong QJ, Deng J, Xiang YC (2008) Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J China Univ Geosci 19:230–241

    CAS  Google Scholar 

  • Gonzáles-Macías C, Schifter I, Lluch-Cota DB, Méndez-Rodríquez L, Hernández Váquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118:211–230

    Google Scholar 

  • Grimshaw HM (Editor), 1987: The determination of total phosphorus in soils by acid digestion. Chemical analysis in environmental research. Abbotts Ripton, NERC/ITE, 92-95. (ITE Symposium, 18)

  • Grosheva EL, Voronskaya GN, Pastukhove MV (2000) Trace element bio-availability in Lake Baikal. Aquat Ecosyst Health Manag 3:229–234

    CAS  Google Scholar 

  • Gupta S, Pandotra P, Gupta AP, Dhar JK, Sharma G, Ram G (2010) Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in the rhizome of Zingiber officinale collected from different locations of North-Western Himalayas by atomic absorption spectroscopy. Food Chem Toxicol 48:2966–2971

    CAS  Google Scholar 

  • Hagan GB, Ofosu FG, Hayford EK, Osae S, Oduro-Afriyie K (2011) Heavy metal contamination and physicochemical assessment of the Densu River Basin in Ghana. Res J Environ Earth Sci 3:385–392

    CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution-control - a sedimentological approach. Water Res 14:975–1001

    Google Scholar 

  • Hakanson L (1984) On a relationship between lake trophic level and lake sediments. Water Res 14:975–1001

    Google Scholar 

  • Hakanson L (1986) Modifications of the Ekman sampler. Int Rev Gesamt Hydrobiol 71:719–721

    Google Scholar 

  • Hakanson L, Ostapenia A, Parparov A, Hambright KD, Boulion VV (2003) Management criteria for lake ecosystems applied to case studies of changes in nutrient loading and climate change. Lakes Reserv Res Manag 8:141–155

    Google Scholar 

  • Hall BD, Bodaly RA, Fudge RJP, Rudd JWM, Rosenberg DM (1997) Food as the dominant pathway of methyl mercury uptake by fish. Water Air Soil Pollut 100:13–24

    CAS  Google Scholar 

  • Harikumar PS, Nasir UP, Mujeebu Rahma MP (2009) Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Technol 6:225–232

    CAS  Google Scholar 

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    CAS  Google Scholar 

  • Hatje V, Birch GF, Hill DM (2001) Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuar Coast Shelf Sci 53:63–77

    CAS  Google Scholar 

  • Ho HH, Swennen R, Cappyuyns V, Vassilieva E, Tran TV (2012) Necessity of normalization to aluminum to assess the contamination by heavy metals and arsenic in sediments near Haiphong Harbor, Vietnam. J Asian Earth Sci 26:229–239

    Google Scholar 

  • Horowitz AJ (1991) A primer on sediment-trace element chemistry. Lewis Publishers, Inc, Chelsea

    Google Scholar 

  • Howarth RW (Editor), 2002: The nitrogen cycle. Encyclopedia of global environmental change. The earth system: biological and ecological dimensions of global environmental change, volume 2. Wiley, Chichester, 429–435 pp

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    CAS  Google Scholar 

  • Hseu ZY (2004) Heavy metal contents in nine composts using for digestion methods. Bioresour Technol 5:53–59

    Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649

    CAS  Google Scholar 

  • Islama MS, Hossaina MB, Abdul Matina A, Sarker MSI (2018) Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River Estuary, Bangladesh. Chemosphere 202:25–32

    Google Scholar 

  • Ismail A (1993) Heavy metal concentration in sediments off Bintulu, Malaysia. Mar Pollut Bull 26:706–710

    CAS  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jackson ML (1964): Determinaciones de Materia Orgánica en los Suelos. In - Analisis Químico de Suelos Analisis Químico de Suelos, 282–310

  • Jennerjahn TC, Ittekkot V, Klöpper S, Adi S, Nugroho SP, Sudiana N, Yusmal A, Prihartanto A, Gaye-Haake B (2004) Biogeochemistry of a tropical river affected by human activities in its catchment: Barntas River estuary and coastal waters of Madura Strait, Java, Indonesia. Estuar Coast Shelf Sci 60:503–514

    CAS  Google Scholar 

  • Johnes PJ, Heathwait AL (1992) A procedure for the simultaneous determination of total nitrogen and total phosphorous in freshwater samples using persulphate microwave digestion. Water Res 26:1281–1287

    CAS  Google Scholar 

  • Jongman RHG, ter Braak CJF, Tongeren OFR (eds) (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, p 299

    Google Scholar 

  • Karageorgis AP, Sioulas AI, Anagnostou CL (2002) Use of surface sediments in Pagassitikos Gulf, Greece, to detect an anthropogenic influence. Geo-Mar Lett 21:200–211

    CAS  Google Scholar 

  • Karl DM, Björkman KM (Editors), 2002: Dynamics of DOP. Biogeochemistry of marine dissolved organic matter. Academic Press, 249–366 pp.

  • Kennish MJ (1997): Practical handbook of estuarine and marine pollution. CPR Press, Inc, 549 pp.

  • Kennish MJ (2001) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107

    Google Scholar 

  • Kerbyson JD, Schandorf JRH (1966) Chemical analysis of Ghana rocks. Ores and minerals, Accra Ghana. Geol Den Surv Bull 42:1945–1965

    Google Scholar 

  • Kesse GO (1985) The mineral and rock resource of Ghana. Balkema, Rotterdam

    Google Scholar 

  • Kim Y, Kim BK, Kim K (2009) Distribution and speciation of heavy metals and their sources in Kumho River sediment, Korea. Environ Earth Sci 60:943–952

    Google Scholar 

  • Klubi E, Abril JM, Nyarko E, Delagado A (2018) Impact of gold-mining activity on trace elements enrichment in the West African estuaries: the case of Pra and Ankobra rivers with the Volta estuary (Ghana) as the reference. J Geochem Explor 190:229–244

    CAS  Google Scholar 

  • Krishna AK, Mohan KD (2014) Risk assessment of heavy metals and their source distribution in waters of the contaminated industrial site. Environ Sci Pollut Res 21:3653–3669

    CAS  Google Scholar 

  • Kumar B, Shah R, Mukherjee D (2011) Geochemical distribution of heavy metals in sediments from sewage fed fish ponds from Kolkata Wetlands, India. Chem Speciat Bioavailab 23:24–32

    CAS  Google Scholar 

  • Langner CL, Hendrix PF (1982) Evaluation of a persulfate digestion method for particulate nitrogen and phosphorus. Water Res 16:1451–1454

    CAS  Google Scholar 

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    CAS  Google Scholar 

  • Ma J, Yuan Y, Zhou T, Yuan D (2017) Determination of total phosphorus in natural waters with a simple neutral digestion method using sodium persulfate. Limnol Oceanogr 15:372–380

    CAS  Google Scholar 

  • Maadin FS, Rahman MRA, Zawawi MABA, Azman S, Oladokun S (2016) Copper and zinc accumulation in sediment at straits of Johor. Malaysian J Civil Eng 28:314–322

    Google Scholar 

  • MacFarlane GB, Burchettt MD (2000) Cellular distribution of Cu, Pb, and Zn in the Grey mangrove Avicennia marina (Forsk.). Vierh Aquatic Botanic 68:45–59

    CAS  Google Scholar 

  • Mahu E (2014) Geochemistry of estuarine sediments of Ghana: provenance, trace mental accumulations trends and ecotoxicological risks. University of Ghana, Accra, p 276

    Google Scholar 

  • Mahu E, Nyarko E, Hulme S, Coale KH (2015) Distribution and enrichment of trace metals in marine sediments from the eastern equatorial Atlantic, off the coast of Ghana in the Gulf of Guinea. Mar Pollut Bull 98:301–307

    CAS  Google Scholar 

  • Markowitz M (2000) Lead poisoning. Pediatr Rev 21:327–335

    CAS  Google Scholar 

  • Martins RV, Lacerda LD, Paraquetti HM, Paiva EC, Villas-Boas RC (1998) Geochemistry of mercury in sediments of a subtropical coastal lagoon, Sepetiba Bay, Southerneastern Brazil. Bull Environ Contam Toxicol 61:57–64

    Google Scholar 

  • Masindi V, Muedi KL (2018): Environmental contamination by heavy metals. In: Saleh HE-D, Aglan RKES (Editors), Heavy metals. IntechOpen, pp. 115–133

  • Matthiesen H 1998: Phosphate release from marine sediments: by diffusion, advection and resuspension, Denmark, 131 pp.

  • McComb J, Alexander TC, Han FX, Tchounwou PB (2014): Understanding biogeochemical cycling of trace elements and heavy metals in estuarine ecosystems. J Bioremediation Biodegr 5

  • Miyazawa M, Pavan MA, Oliveira EL, Ionashiro M, Silva AK (2000) Gravimetric determination of soil organic matter. Braz Arch Biol Technol 43:475–478

    Google Scholar 

  • Mohammadnabizadeh S, Pourkhabbaz A, Afshari R, Nowrouzi M (2012) Concentrations of Cd, Ni, Pb, and Cr in the two edible fish species Lisa klunzingeri and Sillago sihama collected from Hara biosphere in Iran. Toxicol Environ Chem 94:1144–1151

    CAS  Google Scholar 

  • Monney I, Boakye R, Buamah R, Anyemedu FOK, Odai SN, Awuah E (2013) Urbanization and pollution of surface water resources in the two largest cities in Ghana. Int J Environ Monit Anal 1:279–287

    Google Scholar 

  • Morais S, Costa FG, Pereira ML (2012): Heavy metals and human health. Environmental health – emerging issues and practice. InTech, Europe, 324 pp.

  • Mucha AP, Vasconcelos MTSD, Bordalo AA (2003) Macrobenthic community in the Douro Estuary: relations with trace metals and natural sediment characteristics. Environ Pollut 121:169–180

    CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J3:94–99

    Google Scholar 

  • Müller G (1968) Index of geoaccumulation in the sediments of the Rhine River. Geojournal 3:108–118

    Google Scholar 

  • Naggar YA, Khalil MS, Ghorab MA (2018): Environmental pollution of heavy metals in the aquatic ecosystems of Egypt. Open Access J Toxicol 3

  • Nasr SM, Khairy MA, Okbah MA, Soliman NF (2014) AVS-SEM relationships and potential bioavailability of trace metals in sediments from the southeastern Mediterranean Sea, Egypt. Chem Ecol 30:15–28

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (Editors), 1996: Total carbon, organic carbon and organic matter. Methods of soil analysis. Part 3: chemical methods. Soil Science Society of America, Inc, and American Society of Agronomy Inc, Madison, Winsonsin, 961–1010 pp.

  • Nelson RL (1996) History of global metal pollution. Science 272:223–224

    Google Scholar 

  • Niencheski LF, Windom HL, Smith R (1994) Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil). Mar Pollut Bull 28:96–10

    CAS  Google Scholar 

  • Nixon S, Buckley B, Granger S, Bintz J (2001) Responses of very shallow marine ecosystems to nutrient enrichment. Hum Ecol Risk Assess 7:1457–1481

    Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87:253–264

    CAS  Google Scholar 

  • Nogueirol RC, Alleoni LRF (2013) Sequential extraction and speciation of Ba, Cu, Ni, Pb and Zn in soil contaminated with automotive industry waste. Chem Speciat Bioavailab 25:34–42

    CAS  Google Scholar 

  • Norouzi M, Mansouri B, Hamidian AH, Ebrahimi T, Kardoni F (2012) Comparison of the metal concentrations in the feathers of three bird species from southern Iran. Bull Environ Contam Toxicol 89:1082–1086

    CAS  Google Scholar 

  • Nowrouzi M, Pourkhabbaz A (2014) Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem Speciat Bioavailab 26:99–105

    Google Scholar 

  • Nyarko E, Evans SM (1998) Heavy metal pollution in marine mollusks from the coastal waters of Accra, Ghana. J Ghana Sci Assoc 1:105–112

    Google Scholar 

  • Nyarko E, Fletcher A, Addo S, Foli BAK, Mahu E (2014) Geochemical assessment of heavy metals in surface sediments: a case study of Tema Port, Ghana. J Shipp Ocean Eng 4:79–92

    Google Scholar 

  • Olubunmi FE, Olorunsola OE (2010) Evaluation of the status of heavy metal pollution of sediment of agbabu bitumen deposit area. Nigeria Eur J Sci Res 41:373–382

    Google Scholar 

  • Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386:480–482

    CAS  Google Scholar 

  • Osei J, Nyame FK, Armah TK, Osae S, Dampare SB, Adomako F, Bentil N (2010) Application of multivariate analysis for identification of pollution sources in the Densu delta wetland in the vicinity of a land-fill site in Ghana. J Water Resour Protect 2:1018–1027

    Google Scholar 

  • Oyem HH, Oyem IM, Usese AI (2015) Iron, manganese, cadmium, chromium, zinc and arsenic groundwater contents of Agbor and Owa communities of Nigeria. SpringerPlus 4:1–10

    CAS  Google Scholar 

  • Özkan EY (2012) A new assessment of heavy metal contaminations in a eutrophicated bay (Inner Izmir Bay, Turkey). Turk J Fish Aquat Sci 12:135–147

    Google Scholar 

  • Ozseker K, Eruz C, Ciliz S, Mani F (2014) Assessment of heavy metal contribution and associated ecological risk in the coastal zone sediments of the Black Sea: Trabzon. Clean-Soil Air Water 42:1477–1482

    CAS  Google Scholar 

  • Öztürk M, Özözen G, Minareci O, Minareci E (2009) Determination of heavy metals in fish, water and sediments of Avsar Dam Lake in Turkey. Iran J Environ Health Sci Eng 6:73–80

    Google Scholar 

  • Paerl HW, Hall NS, Peierls BL, Rossignol KL (2014) Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuar Coasts 37:243–258

    Google Scholar 

  • Pan K, Wang W (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 422:3–16

    Google Scholar 

  • Pansare S, Shaikh N (2014) Acute toxicity of micro essential copper and zinc to Tilapia mossambica. Bionano Front 7:128–132

    Google Scholar 

  • Parkinson D-R, Dusta JM (2010) Overview of the current status of sediment chemical analysis: trends in analytical techniques. Environ Rev 18:37–59

    CAS  Google Scholar 

  • Parsons J, Belzunce Segarra M, Cornelissen G, Gustafsson O, Grotenhuis T, Harms H, Janssen CR, Kukkonen J, van Noort P, Ortega Calvo JJ, Solaun Etxeberria O (2007) Characterisation of contaminants in sediments — effects of bioavailability on impact. In: Barceló D, Petrovic M (eds) Sustainable management of sediment resources: sediment quality and impact assessment of pollutants. Elsevier, Amsterdam, p 349

    Google Scholar 

  • Pate B, Bangera VS, Balani MC, Patel S, Balani MC (1985) Heavy metals in the Bombay harbour area. Mar Pollut Bull 16:22–28

    Google Scholar 

  • Pekey H, Karakas D, Ayberk S, Tolun L, Bakoglu M (2004) Ecological risk assessment using trace element from surface sediments of Izmit Bay (northeastern Marmara Sea) Turkey. Mar Pollut Bull 48:946–953

    CAS  Google Scholar 

  • Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208

    CAS  Google Scholar 

  • Poppe LJ, Eliason AH, Hastings ME (2003): A visual basic program to classify sediments based on gravel-sand-silt-clay ratios Comp Geosci 29

  • Rajeswari RT, Sailaja N (2014) Impact of heavy metals on environmental pollution. J Chem Pharm Sci 3

  • Reading HG, Collinson JD (1996) Clastic coasts. Sedimentary environments: processes, facies and stratigraphy. Blackwell Science, London, p 688

    Google Scholar 

  • Remyla SR, Sajwan KS, Ramesh M, Kurunthachalam SK (2008) Influence of zinc on cadmium-induced hematological and biochemical responses in a freshwater teleost fish Catla Catla. Fish Physiol Biochem 34:169–174

    CAS  Google Scholar 

  • Riisgard HU, Hansen S (1990) Biomagnifications of mercury in a marine grazing food: algal cells Phaeodactylum tricornutum, mussels Mytilus edulis and flounders Platichthys flesus studied utilizing a stepwise-reduction-CVAA method. Mar Ecol Prog Ser 62:259–270

    Google Scholar 

  • Rivail Da Silva M, Lamotte M, Donard OFX, Soriano-Sierra EJ, Robert M (1996) Metal contamination in surface sediments of mangroves, lagoons and Southern Bay in Florianopolis Island. Environ Technol 17:1035–1046

    CAS  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    CAS  Google Scholar 

  • Ruilian Y, Xing Y, Yuanhui Z, Gongren H, Xianglin T (2008) Heavy metal pollution in intertidal sediments from Quanzhou Bay, China. J Environ Sci 20:664

    Google Scholar 

  • Ruttenberg KC, Goñi MA (1997) Phosphorus distribution, C:N:P ratios, and d13Coc in the Arctic, temperate and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Mar Geol 139:123–145

    CAS  Google Scholar 

  • Rysgaard S, Risgard-Petersen N, Nielsen LP, Revsbech NP (1993): Nitrification and denitrification in the lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Applied and environmental microbiology 59

  • Sakai H, Kojima Y, Saito K (1986) Distribution of metals in water and sieved sediments in the Toyohira River. Water Res 20:559–567

    CAS  Google Scholar 

  • Salati S, Moore F (2010) Assessment of heavy metal concentration in the Khoshk River water and sediment, shiraz, Southwest Iran. Environ Monit Assess 164:677–689

    CAS  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Heidelberg

    Google Scholar 

  • Salomons W, de Rooij NM, Kerdijk H, Bril J (1987) Sediments as a source for contaminants. Hydrobiologia 149:13–30

    CAS  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52:5–23

    CAS  Google Scholar 

  • Salomons W, Förstner U, Mader P (1995) Heavy metals: problems and solutions. Springer-Verlag, Berlin

    Google Scholar 

  • Sam A, Dodoo DK, Essumang DK, Adokoh CK, Nutifafa GD, Ameyaw Y (2010) Assessment of levels of cadmium and mercury of two estuaries in two regions of Ghana. Res J Appl Sci 5:40–46

    CAS  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metals contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:85–194

    Google Scholar 

  • Sastre J, Sahuquillo A, Vidal M, Rauret G (2002) Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta 462:59–72

    CAS  Google Scholar 

  • Sattayatewa C, Arnaldos M, Pagilla K (2011) Measurement of organic nitrogen and phosphorus fractions at very low concentrations in wastewater effluents. Water Environ Res 83:675–683

    CAS  Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Mar Environ Res 48:161–176

    CAS  Google Scholar 

  • Schwartz J (1994) Societal benefits of reducing lead exposure. Environ Res 66:105–124

    CAS  Google Scholar 

  • Scoullos M, Vonkeman GH, Thornton I, Makuch Z (2001) Mercury — cadmium — lead handbook for sustainable heavy metals policy and regulation. Environment & policy, XVIII edn. Springer, Netherlands, p 525

    Google Scholar 

  • Sekabira K, Origa HO, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Technol 7:435–446

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    CAS  Google Scholar 

  • Shepard FP (1957) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158

    Google Scholar 

  • Silbergeld EK (1997) Preventing lead poisoning in children. Annu Rev Public Health 18:187–210

    CAS  Google Scholar 

  • Simex SA, Helz GR (1981) Regional geochemistry of trace elements in the Chesapeake Bay. Environ Geol 3:315–323

    Google Scholar 

  • Simionov I-A, Cristea V, Petra S-M, Sîrbu EB, Coadă MT, Cristea DS (2016) The presence of heavy metals in fish meat from Danube River: an overview. AACL Bioflux 9:1388–1399

    Google Scholar 

  • Sinex SA, Helz GR (1981) Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ Geol 3:315–323

    CAS  Google Scholar 

  • Singh VK, Singh KP, Mohan D (2005) Status of heavy metals in water and bed sediments of river Gomti – a tributary of the Ganga river, India. Environ Monit Assess 105:43–67

    CAS  Google Scholar 

  • Smart MM, Reid FA, Jones JR (1981) A comparison of persulfate digestion and the Kjeldahl procedure for the determination of total nitrogen in aqueous samples. Water Res 15:919–921

    CAS  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge

    Google Scholar 

  • Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999): Sediments as monitors of heavy metal contamination in Ave river basin (Portugal), multivariate analysis of data, Environ Poll 105

  • Soliman NF, Nasr SM, Okbah MA (2015) Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Health Sci Eng 13:13–70

    Google Scholar 

  • Somerfield PJ, Clarke KR (2013) Inverse analysis in non-parametric multivariate analyses: distinguishing groups of associated species which covary coherently across samples. J Exp Mar Biol Ecol 449:261–273

    Google Scholar 

  • Sommers LE, Nelson DW (1972) Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Sci Soc Am Proc 36:902–904

    CAS  Google Scholar 

  • Stankovic S, Kalaba P, Stankovic RA (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84

    CAS  Google Scholar 

  • Stumn W, Morgan JJ (1981): Aquatic chemistry, John Wiley and Sons, 780 pp.

  • Sutherland RA (1999) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:615–627

    Google Scholar 

  • Szefer P, Glasby GP, Szefer K, Pempkowiak J, Kaliszan R (1996) Heavy-metal pollution in superficial sediments from the southern Baltic Sea off Poland. J Environ Health 31:2723–2754

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    CAS  Google Scholar 

  • Taylor SR (1972) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1286

    Google Scholar 

  • Taylor SR (1989): Rare-earth element patterns and crustal composition-a citation classic commentary on the abundance of chemical elements in the continental-crust-a new table by Taylor, Sr. Curr Contents/Eng Technol Appl Sci 16-16

  • Tiessen H, Moir JO (Editors), 1993: Total and organic carbon. Soil sampling and methods of analysis. Lewis Publisher, Florida, 187–199 pp.

  • Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Wiss Meeresunters 33:566–572

    Google Scholar 

  • Turekian KK, Wedepohl DH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    CAS  Google Scholar 

  • Tuzen M, Sari H, Soyiak M (2011) Microwave and wet digestion procedures of atomic absorption spectrometric determination of trace metals contents of sediment samples. Anal Lett 34:1925–1936

    Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    CAS  Google Scholar 

  • Underwood EJ (1977) Trace elements in human and animal nutrition. Academic Press, New York, p 545

    Google Scholar 

  • UNEP-UNICEF (1997): Childhood Programme for Advocacy and Action. Water, Environment and Sanitation Section, Programme Division UNICEF UNEP-UNICEF, UN 3 Plaza New York

  • Walkely A (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Google Scholar 

  • Wang X, Wang J, Zhang J (2012): Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLOS One

  • Watson CA (1994) Official and standardised methods of analysis. Royal Society of Chemistry, Cambridge, UK, 759 pp

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dust and agricultural soils from China. Microchem J 94:99–107

    CAS  Google Scholar 

  • WRI 2003: Groundwater assessment: an element of integrated water resources management—the case study of Densu River Basin, Council for Scientific and Industrial Research Institute (CSIR)-Water Research Institute (WRI), Accra

  • Yan N, Liuu W, Xie H, Gao L, Han Y, Wang M, Li HC (2016) Distribution and assessment of heavy metals in the surface sediment of Yellow RiverChina. J Environ Sci:39–45

  • Yusof AM, Wood AKH (1993) Environmental assessment of coastal sediments by the elemental ratio technique. J Radioanal Nucl Chem 167:341–351

    CAS  Google Scholar 

  • Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    CAS  Google Scholar 

  • Zalewska T, Woroń J, Danowska B, Suplińska M (2015) Temporal changes in Hg, Pb, cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57:32–43

    Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    CAS  Google Scholar 

  • Zhang WG, Feng H, Chang J, Qu JG, Yu LZ (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all those who made the research work possible and a big thanks to the Department of Marine and Fisheries for support and laboratory analyses. Profound gratitude goes to Prof. Dr. Hartmut Stuetzel (Leibniz Universität Hannover) and Dean Emeritus John Farrington (Woods Hole Oceanography Institute, USA) for their scientific support.

Funding

The research was funded by Volkswagen Foundation, Germany (Grant No. 89371) to LGA.

Author information

Authors and Affiliations

Authors

Contributions

Lailah Gifty Akita: conceptualization, investigation, methodology, formal analysis, funding acquisition, and writing-original draft preparation. Laudien Juergen: conceptualization, funding acquisition, and writing-original draft preparation. Nyarko Elvis: methodology, funding acquisition, writing-review, and editing.

Corresponding author

Correspondence to Lailah Gifty Akita.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial Responsibility: Vedula VSS Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised: The correct equations are presented in this paper.

Appendix

Appendix

Table 11 Enrichment factors estimated for the metals measured at the Densu Estuary, Ghana
Table 12 Contamination factors estimated for the metals measured at the Densu Estuary, Ghana
Table 13 Geoaccumulation indices estimated for the metals measured at the Densu Estuary, Ghana
Table 14 Pearson’s correlation for organics and metals concentrations in the sediment of the Densu Estuary, Ghana

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akita, L.G., Laudien, J. & Nyarko, E. Geochemical contamination in the Densu Estuary, Gulf of Guinea, Ghana. Environ Sci Pollut Res 27, 42530–42555 (2020). https://doi.org/10.1007/s11356-020-10035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10035-4

Keywords

  • Metal pollution
  • Potential ecological risk index
  • Densu Estuary
  • Gulf of Guinea