Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer’s disease (AD). The exact etiology of Alzheimer’s disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abou-Donia MB, Goldstein LB, Bullman S, Tu T, Khan WA, Dechkovskaia AM, Abdel-Rahman AA (2008) Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J Toxic Environ Health A 71(2):119–130
Ahn KC et al (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 116(9):1203–1210
Ali EH, Elgoly AHM (2013) Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model. Pharmacol Biochem Behav 111:102–110
Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2011
Al-Mousa F, Michelangeli F (2012) Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells. PLoS One 7(4):e33059
Altmann P et al (1999) Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. Bmj 319(7213):807–811
An L et al (2012) Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett 213(2):220–227
Androutsopoulos VP et al (2013) A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94
Ascherio A et al (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 60(2):197–203
Ashok A et al (2014) Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80
Avramopoulos D (2009) Genetics of Alzheimer’s disease: recent advances. Genome Med 1(3):34
Aygun D (2004) Diagnosis in an acute organophosphate poisoning: report of three interesting cases and review of the literature. Eur J Emerg Med 11(1):55–58
Bakulski KM et al (2012) Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res 9(5):563–573
Baldi I et al (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5):409–414
Ballaed C et al (2011) Jones e. Alzheimer’s disease. Lancet 377:1019–1031
Barse A et al (2007) Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pestic Biochem Physiol 88(1):36–42
Barse A et al (2010) Vitellogenin induction and histo-metabolic changes following exposure of Cyprinus carpio to methyl paraben. Asian Australas J Anim Sci 23(12):1557–1565
Basha MR et al (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and β-amyloid in the aging brain. J Neurosci 25(4):823–829
Basun H et al (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Parkinson’s Dis Dement Sect 3(4):231–258
Bateman RJ et al (2011) Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 3(1):1
Baum L et al (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23(1):173
Behl M et al (2009) Increased β-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol Appl Pharmacol 240(2):245–254
Behl M et al (2010) Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31(5):524–532
Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7(1):50
Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516
Boberg J et al (2010) Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol 30(2):301–312
Bonda DJ et al (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3(3):267–270
Borrell B (2010) Toxicology: the big test for bisphenol A. Nature News 464(7292):1122–1124
Boyle PA et al (2009) Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol 66(11):1339–1344
Calafat AM et al (2010) Urinary concentrations of four parabens in the US population: NHANES 2005–2006. Environ Health Perspect 118(5):679–685
Calderon-Garciduenas L et al (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6):650–658
Calderón-Garcidueñas L et al (2012) Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 28(1):93–107
Calderón-Garcidueñas L et al (2013) Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses—it is time to face the evidence. Biomed Res Int 2013
Calderón-Segura ME et al (2012) Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news. J Toxicol. https://doi.org/10.1155/2012/612647
Campbell A (2002) The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant 17(suppl_2):17–20
Cardoso BR et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Br J Nutr 103(6):803–806
Cardoso BR, Cominetti C, Cozzolino SMF (2013) Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clin Interv Aging 8:531
Chang J-W et al (2008) Cognitive function and blood methylmercury in adults living near a deserted chloralkali factory. Environ Res 108(3):334–339
Chavan H, Krishnamurthy P (2012) Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem 287(38):32054–32068
Chen J et al (2007) Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149(3):1173–1179
Chen L et al (2012a) Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol Aging 33(2):432. e15–432. e26
Chen N-N et al (2012b) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimers Dis 30(3):585–594
Cherednichenko G et al (2012) Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci 109(35):14158–14163
Chhabra D et al (2012) Chronic heavy metal exposure and gallbladder cancer risk in India, a comparative study with Japan. Asian Pac J Cancer Prev 13(1):187–190
Chhillar N et al (2013) β-hexachlorocyclohexane as a risk for Alzheimer’s disease: a pilot study in north Indian population. Am J Alzheimers Dis 1:60–71
Chung E et al (2011) Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc Natl Acad Sci 108(43):17732–17737
Colosio C, Tiramani M, Maroni M (2003) Neurobehavioral effects of pesticides: state of the art. Neurotoxicology 24(4–5):577–591
Coon KD et al (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4):613–618
Costa LG et al (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110
Costa LG et al (2014) Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int. https://doi.org/10.1155/2014/736385
Craddock TJ et al (2012) The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 7(3):e33552
Crapper D, Krishnan S, Dalton A (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085):511–513
Dani SU (2010) Arsenic for the fool: an exponential connection. Sci Total Environ 408(8):1842–1846
Deibel M, Ehmann W, Markesbery W (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143(1–2):137–142
Dorsey CD et al (2006) Comparison of patella lead with blood lead and tibia lead and their associations with neurobehavioral test scores. J Occup Environ Med 48(5):489–496
Edwards FL, Yedjou CG, Tchounwou PB (2013) Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol 28(6):342–348
Eriksson P et al (2002) A brominated flame retardant, 2, 2, 4, 4, 5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67(1):98–103
Escott-Price V et al (2015) Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 138(12):3673–3684
Eskenazi B et al (2006) In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 118(1):233–241
Eskenazi B et al (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115(5):792–798
Eskenazi B et al (2012) In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect 121(2):257–262
Estevez AO et al (2012) Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 33(5):1021–1032
Exley C et al (1993) An interaction of β-amyloid with aluminium in vitro. FEBS Lett 324(3):293–295
Fox M et al (2013) Hygiene and the world distribution of Alzheimer’s diseaseEpidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol Med Public Health 2013(1):173–186
Genc S et al (2012) The adverse effects of air pollution on the nervous system. J Toxicol. https://doi.org/10.1155/2012/782462
Gerhardsson L et al (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):508–515
Godfrey ME, Wojcik DP, Krone CA (2003) Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimers Dis 5(3):189–195
Gohlke JM et al (2009) AhR-mediated gene expression in the developing mouse telencephalon. Reprod Toxicol 28(3):321–328
Govarts E et al (2011) Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect 120(2):162–170
Grandjean P et al (2006) Pesticide exposure and stunting as independent predictors of neurobehavioral deficits in Ecuadorian school children. Pediatrics 117(3):e546–e556
Grashow R et al (2013) Cumulative lead exposure in community-dwelling adults and fine motor function: comparing standard and novel tasks in the VA normative aging study. Neurotoxicology 35:154–161
Gu H et al (2011) Lead exposure increases levels of β-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice. Neurosci Lett 490(1):16–20
Guilarte TR (2010) APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology 31(5):572–574
Guilarte TR et al (2008) Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem 105(5):1948–1959
Guo Z et al (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54(6):1316–1323
Hajszan T, Leranth C (2010) Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 31(4):519–530
Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194
Halden RU (2014) On the need and speed of regulating triclosan and triclocarban in the United States. ACS Publications. Environ Sci Technol 48(7):3603–3611
Haley BE (2007) The relationship of the toxic effects of mercury to exacerbation of the medical condition classified as Alzheimer’s disease. Med Veritas 4(2):1484–1498
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–186
Hauser R et al (2005) Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect 113(4):425–430
Hayden KM et al (2010) Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74(19):1524–1530
Henriksson J, Tjälve H (2000) Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol Sci 55(2):392–398
Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide–induced apoptosis: role of Calpain and the ER stress pathway. Toxicol Sci 122(2):512–525
House E et al (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ 42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6(3):291–301
Huang X et al (2000) Alzheimer’s disease, β-amyloid protein and zinc. J Nutr 130(5):1488S–1492S
Huang C-L et al (2015) Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 136:253–263
Ibrahim AM et al (2020) Neuron‐Glia interaction: Molecular basis of Alzheimer’s Disease and Applications of Neuroproteomics. Eur J Neurosci. https://doi.org/10.1111/ejn.14838
Ihara D et al (2012) Deltamethrin, a type II pyrethroid insecticide, has neurotrophic effects on neurons with continuous activation of the Bdnf promoter. Neuropharmacology 62(2):1091–1098
Jia L et al (2012) Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J Pharm Pharmacol 64(10):1510–1521
Jiang L-F et al (2007) Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta (BBA) Proteins Proteomics 1774(11):1414–1421
Jiang T et al (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867
Johansson C et al (2007) Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11(3–4):241–260
Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76(5):569–581
Jonsson B (2006) Risk assessment on butylphenol, octylphenol and nonylphenol, and estimated human exposure of alkylphenols from Swedish fish. Ekotoxikologiska avdelningen, Uppsala Universitet
Kakeyama M, Tohyama C (2003) Developmental neurotoxicity of dioxin and its related compounds. Ind Health 41(3):215–230
Kamboj SS et al (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28(7):961–969
Kang S et al (2013) Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers. Sci Total Environ 461:214–221
Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51
Kawaguchi M et al (2009) Maternal isobutyl-paraben exposure alters anxiety and passive avoidance test performance in adult male rats. Neurosci Res 65(2):136–140
Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis. https://doi.org/10.4061/2011/276393
Kawahara M, Kato M, Kuroda Y (2001) Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein. Brain Res Bull 55(2):211–217
Kim J et al (2006) Cobalt and inorganic cobalt compounds, Concise International Chemical Assessment Document, 69. Wissenchaftliche Verlagsellschaft mbh, Stuttgart, p 16
Kim SH et al (2012) Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Res 1:70. https://doi.org/10.12688/f1000research.1-70.v1
Kim D-K, Park J-D, Choi B-S (2014) Mercury-induced amyloid-beta (Aβ) accumulation in the brain is mediated by disruption of Aβ transport. J Toxicol Sci 39(4):625–635
Kimura-Kuroda J et al (2012) Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7(2):e32432
Koch W (2013) Walmart announces phase-out of hazardous chemicals. USAToday. com (Sept 12). Accessed. 13
Kodavanti PRS (2011) Cell signaling and neurotoxicity: protein kinase C in vitro and in vivo, in In Vitro Neurotoxicology. Springer, New York, pp 307–319
Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of α-secretases, in Alzheimer’s Disease. Springer, pp 105–127
Kukull WA et al (1995) Solvent exposure as a risk factor for Alzheimer’s disease: a case-control study. Am J Epidemiol 141(11):1059–1071
Laetz CA et al (2008) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117(3):348–353
Lahiri DK (2012) Prions: a piece of the puzzle? Science 337(6099):1172–1172
Lahiri DK, Maloney B (2012) The “LEARn”(latent early-life associated regulation) model: an epigenetic pathway linking metabolic and cognitive disorders. J Alzheimers Dis 30(s2):S15–S30
Landrigan PJ et al (1999) Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect 107(suppl 3):431–437
Latchney SE et al (2013) Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem 125(3):430–445
Lee S-J et al (2010) Acute illnesses associated with exposure to fipronil—surveillance data from 11 states in the United States, 2001–2007. Clin Toxicol 48(7):737–744
Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 12(4):733–737
Leranth C et al (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci 105(37):14187–14191
Li N et al (2010) Increased tau phosphorylation and beta amyloid in the hipocampus of mouse pups by early life lead exposure. Acta Biol Hung 61(2):123–134
Li X et al (2012) The effect of cadmium on Aβ levels in APP/PS1 transgenic mice. Exp Ther Med 4(1):125–130
Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc Natl Acad Sci 109(25):10071–10076
Liu B, Hong J-S (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304(1):1–7
Liu J, Goyer RA, Waalkes MP (2008) In: Klaasen CD (ed) Toxic effects of metals. Casarett and Doull’s toxicology: the basic science of poisons, seventh edition. McGraw-Hill Medical, New York, pp 931–979
Lokanatha V, Sailaja P, Rajendra W (1999) In vitro kinetics of the rat brain succinate dehydrogenase inhibition by hexachlorophene. J Biochem Mol Toxicol 13(6):303–306
Lui E et al (1990) Metals and the liver in Alzheimer’s disease an investigation of hepatic zinc, copper, cadmium, and metallothionein. J Am Geriatr Soc 38(6):633–639
Luo Y et al (2009) Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl3 induced mouse brain. Mech Ageing Dev 130(4):248–252
Ma W-L et al (2013) Urinary concentrations of parabens in Chinese young adults: implications for human exposure. Arch Environ Contam Toxicol 65(3):611–618
Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int. https://doi.org/10.1155/2014/84054710.1155/2014/840547
Matés JM et al (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341
McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269
Miodovnik A et al (2011) Endocrine disruptors and childhood social impairment. Neurotoxicology 32(2):261–267
Mishra D et al (2012) Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring. Toxicol Sci 127(1):84–100
Monnet-Tschudi F et al (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–118
Moulton PV, Yang W (2012) Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. https://doi.org/10.1155/2012/472751
Mutter J et al (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinol Lett 25(5):331–339
Mwila K et al (2013) The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monit Assess 185(3):2315–2327
Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174(2):130–138
Nasuti C et al (2007) Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229(3):194–205
Negishi T et al (2003) Inhibition of staurosporine-induced neuronal cell death by bisphenol A and nonylphenol in primary cultured rat hippocampal and cortical neurons. Neurosci Lett 353(2):99–102
Nielsen FH (2000) Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditioinally essential. J Trace Elem Exp Med 13(1):113–129
Niño SA et al (2018) Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model. ACS Chem Neurosci 10(1):323–336
O’Bryant SE et al (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8(3):861–874
Olivieri G et al (2000) Mercury induces cell cytotoxicity and oxidative stress and increases β-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74(1):231–236
Organization WH (2011) Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada
Park H-Y et al (2009) Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect 117(10):1600–1606
Park H-Y et al (2010) Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study. Environ Health 9(1):51
Perl D (2006) Exposure to aluminium and the subsequent development of a disorder with features of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77(7):811–811
Pocar P et al (2003) Toxic effects of in vitro exposure to p-tert-octylphenol on bovine oocyte maturation and developmental competence. Biol Reprod 69(2):462–468
Prasad GV, Indira K, Rajendra W (1987) Inhibition of sheep brain acetylcholinesterase by hexachlorophene. Bull Environ Contam Toxicol 38(1):139–142
Prince M et al (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 8(1):23
Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336(6088):1511–1513
Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology 315:92–101
Qizilbash N et al (2015) BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol 3(6):431–436
Rahman MA et al (2020) Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08243-z
Rao P et al (1994) Comparative inhibition of rodent and human erythrocyte acetylcholinesterase by carbofuran and carbaryl. Pestic Biochem Physiol 48(2):79–84
Raven EP et al (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37(1):127–136
Rees Clayton EM et al (2010) The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003–2006. Environ Health Perspect 119(3):390–396
Richardson JR et al (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71(3):284–290
Ritchie GD et al (2001) A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev 4(3):223–312
Rivas-Arancibia S et al (2009) Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci 113(1):187–197
Rogers JT et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274(10):6421–6431
Rondeau V et al (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152(1):59–66
Rondeau V et al (2008) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169(4):489–496
Rouimi P et al (2012) Impacts of low doses of pesticide mixtures on liver cell defence systems. Toxicol in Vitro 26(5):718–726
Ruder AM et al (2014) Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health 217(2–3):176–187
Schantz SL, Bowman RE (1989) Learning in monkeys exposed perinatally to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol 11(1):13–19
Schneider J et al (2013) Chronic manganese exposure impairs visuospatial associative learning in non-human primates. Toxicol Lett 221(2):146–151
Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498
Shanker Sharma H, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):65–80
Shao M et al (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4(7):353–361
Sharma HS et al (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9(8):5055–5072
Sharma P et al (2020) Biological signatures of Alzheimer’s disease. Curr Top Med Chem 20(9):770–781
Shen X-L et al (2014) Positive relationship between mortality from Alzheimer’s disease and soil metal concentration in mainland China. J Alzheimers Dis 42(3):893–900
Shih RA et al (2006) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3):483–492
Shuman RM, Leech RW, Alvord EC (1974) Neurotoxicity of hexachlorophene in the human: I. A clinicopathologic study of 248 children. Pediatrics 54(6):689–695
Shuman RM, Leech RW, Alvord EC (1975) Neurotoxicity of hexachlorophene in humans: II. A clinicopathological study of 46 premature infants. Arch Neurol 32(5):320–325
Singh S, Li SS-L (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13(8):10143–10153
Singh I et al (2013a) Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci 110(36):14771–14776
Singh N et al (2013b) Organochlorine pesticide levels and risk of Alzheimer’s disease in north Indian population. Hum Exp Toxicol 32(1):24–30
Smith KW et al (2013) Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect 121(11–12):1299–1305
Smulders CJ et al (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193(2):139–146
Solfrizzi V et al (2011) Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother 11(5):677–708
Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proc Natl Acad Sci 100(19):11065–11069
Steenland K et al (2006) Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 17(1):8–13
Stehr CM et al (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92(1):270–278
Sul D et al (2009) 2, 3, 7, 8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology 255(1–2):65–71
Sun X, Bromley-Brits K, Song W (2012) Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 120:62–70
Sun W et al (2014) Perinatal exposure to di-(2-ethylhexyl)-phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats. Environ Toxicol 29(5):596–603
Syme CD et al (2004) Copper binding to the amyloid-β (Aβ) peptide associated with Alzheimer’s disease folding, coordination geometry, pH dependence, stoichiometry, and affinity of Aβ-(1–28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279(18):18169–18177
Tapiero Hernández Y, Barragán IR, Rubio AC (2013) Neurotoxic potential of trichlorfon to multiple sublethal doses in wistar rats. Acta Biol Colomb 18(3):479–488
Tchounwou PB et al (2012) Heavy metal toxicity and the environment In: Luch A. (eds) Molecular, clinical and environmental toxicology. Experientia Supplementum, vol 101. Springer, Basel, pp 133–164
Téllez-Rojo MM et al (2013) Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ 461:386–390
Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619
Thompson C et al (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9(1):1–7
Tisch U et al (2013) Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 8(1):43–56
Torres-Sánchez L et al (2012) Prenatal p, p-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environ Health Perspect 121(2):263–268
Tröster AI, Ruff RM, Watson DP (1991) Dementia as a neuropsychological consequence of chronic occupational exposure to polychlorinated biphenyls (PCBs). Arch Clin Neuropsychol 6(4):301–318
Trudeau VL et al (2002) Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina. Environ Health Perspect 110(3):269–275
Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1(2):132–147
Ullrich C, Humpel C (2009) Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model. Neurochem Res 34(12):2147
Vaiserman A (2014) Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis 5(6):419
van Norden AG et al (2012) Dementia: Alzheimer pathology and vascular factors: from mutually exclusive to interaction. Biochim Biophys Acta (BBA) Mol Basis Dis 1822(3):340–349
Veldhoen N et al (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80(3):217–227
Venkatesan AK, Halden RU (2013) National inventory of alkylphenol ethoxylate compounds in US sewage sludges and chemical fate in outdoor soil mesocosms. Environ Pollut 174:189–193
Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252
Viaene M et al (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57(1):19–27
Viberg H, Fredriksson A, Eriksson P (2003) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192(2):95–106
Walton J, Wang M-X (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103(11):1548–1554
Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev. https://doi.org/10.1155/2013/898034
Wang G et al (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res 28(10):2135–2140
Ward N, Mason J (1987) Neutron activation analysis techniques for identifying elemental status in Alzheimer’s disease. J Radioanal Nucl Chem 113(2):515–526
Waseem Bihaqi S, Zawia NH (2012) Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 9(5):555–562
Watanabe H et al (2004) Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol. J Mol Endocrinol 33(1):243–252
Weisskopf MG et al (2007) Cumulative lead exposure and cognitive performance among elderly men. Epidemiology 18(1):59–66
Wells E et al (2014) Association of selenium and copper with lipids in umbilical cord blood. J Dev Orig Health Dis 5(4):281–287
Wenstrup D, Ehman WD, Markesbery WR (1990) Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res 533(1):125–131
Wojcik DP et al (2006) Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting. Neuroendocrinol Lett 27:415–423
Wu J et al (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28(1):3–9
Xu G et al (2013a) 2, 3, 7, 8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. Neurotoxicology 37:63–73
Xu H et al (2013b) Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull Environ Contam Toxicol 91(6):635–639
Xu W et al (2015) Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(12):1299–1306
Yang X et al (2014) Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 229(1):240–249
Yegambaram M et al (2015) Role of environmental contaminants in the etiology of Alzheimer’s disease: a review. Curr Alzheimer Res 12(2):116–146
Yeo M et al (2013) Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci 110(11):4315–4320
Yueh M-F et al (2012) Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha. PLoS One 7(6):e37705
Ze Y et al (2014) Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A 102(2):470–478
Zhu X et al (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 9(2):147–153
Zhu X et al (2007) Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 64(17):2202–2210
Author information
Authors and Affiliations
Corresponding authors
Additional information
Responsible editor: Philippe Garrigues
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mir, R.H., Sawhney, G., Pottoo, F.H. et al. Role of environmental pollutants in Alzheimer’s disease: a review. Environ Sci Pollut Res 27, 44724–44742 (2020). https://doi.org/10.1007/s11356-020-09964-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-020-09964-x