Skip to main content

Advertisement

Log in

Role of environmental pollutants in Alzheimer’s disease: a review

  • Environmental Pollutants and the Risk of Neurological Disorders
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer’s disease (AD). The exact etiology of Alzheimer’s disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abou-Donia MB, Goldstein LB, Bullman S, Tu T, Khan WA, Dechkovskaia AM, Abdel-Rahman AA (2008) Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J Toxic Environ Health A 71(2):119–130

    CAS  Google Scholar 

  • Ahn KC et al (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 116(9):1203–1210

    CAS  Google Scholar 

  • Ali EH, Elgoly AHM (2013) Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model. Pharmacol Biochem Behav 111:102–110

    CAS  Google Scholar 

  • Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2011

  • Al-Mousa F, Michelangeli F (2012) Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells. PLoS One 7(4):e33059

    CAS  Google Scholar 

  • Altmann P et al (1999) Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. Bmj 319(7213):807–811

    CAS  Google Scholar 

  • An L et al (2012) Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett 213(2):220–227

    CAS  Google Scholar 

  • Androutsopoulos VP et al (2013) A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94

    CAS  Google Scholar 

  • Ascherio A et al (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 60(2):197–203

    CAS  Google Scholar 

  • Ashok A et al (2014) Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80

    Google Scholar 

  • Avramopoulos D (2009) Genetics of Alzheimer’s disease: recent advances. Genome Med 1(3):34

    Google Scholar 

  • Aygun D (2004) Diagnosis in an acute organophosphate poisoning: report of three interesting cases and review of the literature. Eur J Emerg Med 11(1):55–58

    Google Scholar 

  • Bakulski KM et al (2012) Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res 9(5):563–573

    CAS  Google Scholar 

  • Baldi I et al (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5):409–414

    Google Scholar 

  • Ballaed C et al (2011) Jones e. Alzheimer’s disease. Lancet 377:1019–1031

    Google Scholar 

  • Barse A et al (2007) Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pestic Biochem Physiol 88(1):36–42

    CAS  Google Scholar 

  • Barse A et al (2010) Vitellogenin induction and histo-metabolic changes following exposure of Cyprinus carpio to methyl paraben. Asian Australas J Anim Sci 23(12):1557–1565

    CAS  Google Scholar 

  • Basha MR et al (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and β-amyloid in the aging brain. J Neurosci 25(4):823–829

    CAS  Google Scholar 

  • Basun H et al (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Parkinson’s Dis Dement Sect 3(4):231–258

    CAS  Google Scholar 

  • Bateman RJ et al (2011) Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 3(1):1

    Google Scholar 

  • Baum L et al (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23(1):173

    CAS  Google Scholar 

  • Behl M et al (2009) Increased β-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol Appl Pharmacol 240(2):245–254

    CAS  Google Scholar 

  • Behl M et al (2010) Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31(5):524–532

    CAS  Google Scholar 

  • Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7(1):50

    Google Scholar 

  • Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516

    CAS  Google Scholar 

  • Boberg J et al (2010) Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol 30(2):301–312

    CAS  Google Scholar 

  • Bonda DJ et al (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3(3):267–270

    CAS  Google Scholar 

  • Borrell B (2010) Toxicology: the big test for bisphenol A. Nature News 464(7292):1122–1124

    CAS  Google Scholar 

  • Boyle PA et al (2009) Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol 66(11):1339–1344

    Google Scholar 

  • Calafat AM et al (2010) Urinary concentrations of four parabens in the US population: NHANES 2005–2006. Environ Health Perspect 118(5):679–685

    CAS  Google Scholar 

  • Calderon-Garciduenas L et al (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6):650–658

    Google Scholar 

  • Calderón-Garcidueñas L et al (2012) Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 28(1):93–107

  • Calderón-Garcidueñas L et al (2013) Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses—it is time to face the evidence. Biomed Res Int 2013

  • Calderón-Segura ME et al (2012) Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news. J Toxicol. https://doi.org/10.1155/2012/612647

  • Campbell A (2002) The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant 17(suppl_2):17–20

    CAS  Google Scholar 

  • Cardoso BR et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Br J Nutr 103(6):803–806

    CAS  Google Scholar 

  • Cardoso BR, Cominetti C, Cozzolino SMF (2013) Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clin Interv Aging 8:531

    CAS  Google Scholar 

  • Chang J-W et al (2008) Cognitive function and blood methylmercury in adults living near a deserted chloralkali factory. Environ Res 108(3):334–339

    CAS  Google Scholar 

  • Chavan H, Krishnamurthy P (2012) Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem 287(38):32054–32068

    CAS  Google Scholar 

  • Chen J et al (2007) Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149(3):1173–1179

    Google Scholar 

  • Chen L et al (2012a) Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol Aging 33(2):432. e15–432. e26

    CAS  Google Scholar 

  • Chen N-N et al (2012b) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimers Dis 30(3):585–594

    CAS  Google Scholar 

  • Cherednichenko G et al (2012) Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci 109(35):14158–14163

    CAS  Google Scholar 

  • Chhabra D et al (2012) Chronic heavy metal exposure and gallbladder cancer risk in India, a comparative study with Japan. Asian Pac J Cancer Prev 13(1):187–190

    Google Scholar 

  • Chhillar N et al (2013) β-hexachlorocyclohexane as a risk for Alzheimer’s disease: a pilot study in north Indian population. Am J Alzheimers Dis 1:60–71

    CAS  Google Scholar 

  • Chung E et al (2011) Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc Natl Acad Sci 108(43):17732–17737

    CAS  Google Scholar 

  • Colosio C, Tiramani M, Maroni M (2003) Neurobehavioral effects of pesticides: state of the art. Neurotoxicology 24(4–5):577–591

    CAS  Google Scholar 

  • Coon KD et al (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68(4):613–618

    CAS  Google Scholar 

  • Costa LG et al (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110

    CAS  Google Scholar 

  • Costa LG et al (2014) Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int. https://doi.org/10.1155/2014/736385

  • Craddock TJ et al (2012) The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 7(3):e33552

    CAS  Google Scholar 

  • Crapper D, Krishnan S, Dalton A (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085):511–513

    CAS  Google Scholar 

  • Dani SU (2010) Arsenic for the fool: an exponential connection. Sci Total Environ 408(8):1842–1846

    CAS  Google Scholar 

  • Deibel M, Ehmann W, Markesbery W (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143(1–2):137–142

    CAS  Google Scholar 

  • Dorsey CD et al (2006) Comparison of patella lead with blood lead and tibia lead and their associations with neurobehavioral test scores. J Occup Environ Med 48(5):489–496

    CAS  Google Scholar 

  • Edwards FL, Yedjou CG, Tchounwou PB (2013) Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol 28(6):342–348

    CAS  Google Scholar 

  • Eriksson P et al (2002) A brominated flame retardant, 2, 2, 4, 4, 5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67(1):98–103

    CAS  Google Scholar 

  • Escott-Price V et al (2015) Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 138(12):3673–3684

    Google Scholar 

  • Eskenazi B et al (2006) In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 118(1):233–241

    Google Scholar 

  • Eskenazi B et al (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115(5):792–798

    CAS  Google Scholar 

  • Eskenazi B et al (2012) In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect 121(2):257–262

    Google Scholar 

  • Estevez AO et al (2012) Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 33(5):1021–1032

    CAS  Google Scholar 

  • Exley C et al (1993) An interaction of β-amyloid with aluminium in vitro. FEBS Lett 324(3):293–295

    CAS  Google Scholar 

  • Fox M et al (2013) Hygiene and the world distribution of Alzheimer’s diseaseEpidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol Med Public Health 2013(1):173–186

    Google Scholar 

  • Genc S et al (2012) The adverse effects of air pollution on the nervous system. J Toxicol. https://doi.org/10.1155/2012/782462

  • Gerhardsson L et al (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):508–515

    CAS  Google Scholar 

  • Godfrey ME, Wojcik DP, Krone CA (2003) Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimers Dis 5(3):189–195

    CAS  Google Scholar 

  • Gohlke JM et al (2009) AhR-mediated gene expression in the developing mouse telencephalon. Reprod Toxicol 28(3):321–328

    CAS  Google Scholar 

  • Govarts E et al (2011) Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect 120(2):162–170

    Google Scholar 

  • Grandjean P et al (2006) Pesticide exposure and stunting as independent predictors of neurobehavioral deficits in Ecuadorian school children. Pediatrics 117(3):e546–e556

    Google Scholar 

  • Grashow R et al (2013) Cumulative lead exposure in community-dwelling adults and fine motor function: comparing standard and novel tasks in the VA normative aging study. Neurotoxicology 35:154–161

    CAS  Google Scholar 

  • Gu H et al (2011) Lead exposure increases levels of β-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice. Neurosci Lett 490(1):16–20

    CAS  Google Scholar 

  • Guilarte TR (2010) APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology 31(5):572–574

    CAS  Google Scholar 

  • Guilarte TR et al (2008) Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem 105(5):1948–1959

    CAS  Google Scholar 

  • Guo Z et al (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54(6):1316–1323

    CAS  Google Scholar 

  • Hajszan T, Leranth C (2010) Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 31(4):519–530

    CAS  Google Scholar 

  • Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Google Scholar 

  • Halden RU (2014) On the need and speed of regulating triclosan and triclocarban in the United States. ACS Publications. Environ Sci Technol 48(7):3603–3611

  • Haley BE (2007) The relationship of the toxic effects of mercury to exacerbation of the medical condition classified as Alzheimer’s disease. Med Veritas 4(2):1484–1498

    Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–186

    CAS  Google Scholar 

  • Hauser R et al (2005) Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect 113(4):425–430

    CAS  Google Scholar 

  • Hayden KM et al (2010) Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74(19):1524–1530

    CAS  Google Scholar 

  • Henriksson J, Tjälve H (2000) Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol Sci 55(2):392–398

    CAS  Google Scholar 

  • Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide–induced apoptosis: role of Calpain and the ER stress pathway. Toxicol Sci 122(2):512–525

    CAS  Google Scholar 

  • House E et al (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ 42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6(3):291–301

    CAS  Google Scholar 

  • Huang X et al (2000) Alzheimer’s disease, β-amyloid protein and zinc. J Nutr 130(5):1488S–1492S

    CAS  Google Scholar 

  • Huang C-L et al (2015) Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 136:253–263

    CAS  Google Scholar 

  • Ibrahim AM et al (2020) Neuron‐Glia interaction: Molecular basis of Alzheimer’s Disease and Applications of Neuroproteomics. Eur J Neurosci. https://doi.org/10.1111/ejn.14838

  • Ihara D et al (2012) Deltamethrin, a type II pyrethroid insecticide, has neurotrophic effects on neurons with continuous activation of the Bdnf promoter. Neuropharmacology 62(2):1091–1098

    CAS  Google Scholar 

  • Jia L et al (2012) Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J Pharm Pharmacol 64(10):1510–1521

    CAS  Google Scholar 

  • Jiang L-F et al (2007) Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta (BBA) Proteins Proteomics 1774(11):1414–1421

    CAS  Google Scholar 

  • Jiang T et al (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867

    CAS  Google Scholar 

  • Johansson C et al (2007) Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11(3–4):241–260

    CAS  Google Scholar 

  • Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76(5):569–581

    CAS  Google Scholar 

  • Jonsson B (2006) Risk assessment on butylphenol, octylphenol and nonylphenol, and estimated human exposure of alkylphenols from Swedish fish. Ekotoxikologiska avdelningen, Uppsala Universitet

  • Kakeyama M, Tohyama C (2003) Developmental neurotoxicity of dioxin and its related compounds. Ind Health 41(3):215–230

    CAS  Google Scholar 

  • Kamboj SS et al (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28(7):961–969

    CAS  Google Scholar 

  • Kang S et al (2013) Urinary paraben concentrations among pregnant women and their matching newborn infants of Korea, and the association with oxidative stress biomarkers. Sci Total Environ 461:214–221

    Google Scholar 

  • Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51

    CAS  Google Scholar 

  • Kawaguchi M et al (2009) Maternal isobutyl-paraben exposure alters anxiety and passive avoidance test performance in adult male rats. Neurosci Res 65(2):136–140

    CAS  Google Scholar 

  • Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis. https://doi.org/10.4061/2011/276393

  • Kawahara M, Kato M, Kuroda Y (2001) Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein. Brain Res Bull 55(2):211–217

    CAS  Google Scholar 

  • Kim J et al (2006) Cobalt and inorganic cobalt compounds, Concise International Chemical Assessment Document, 69. Wissenchaftliche Verlagsellschaft mbh, Stuttgart, p 16

    Google Scholar 

  • Kim SH et al (2012) Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Res 1:70. https://doi.org/10.12688/f1000research.1-70.v1

  • Kim D-K, Park J-D, Choi B-S (2014) Mercury-induced amyloid-beta (Aβ) accumulation in the brain is mediated by disruption of Aβ transport. J Toxicol Sci 39(4):625–635

    CAS  Google Scholar 

  • Kimura-Kuroda J et al (2012) Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7(2):e32432

    CAS  Google Scholar 

  • Koch W (2013) Walmart announces phase-out of hazardous chemicals. USAToday. com (Sept 12). Accessed. 13

  • Kodavanti PRS (2011) Cell signaling and neurotoxicity: protein kinase C in vitro and in vivo, in In Vitro Neurotoxicology. Springer, New York, pp 307–319

  • Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of α-secretases, in Alzheimer’s Disease. Springer, pp 105–127

  • Kukull WA et al (1995) Solvent exposure as a risk factor for Alzheimer’s disease: a case-control study. Am J Epidemiol 141(11):1059–1071

    CAS  Google Scholar 

  • Laetz CA et al (2008) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117(3):348–353

    Google Scholar 

  • Lahiri DK (2012) Prions: a piece of the puzzle? Science 337(6099):1172–1172

    CAS  Google Scholar 

  • Lahiri DK, Maloney B (2012) The “LEARn”(latent early-life associated regulation) model: an epigenetic pathway linking metabolic and cognitive disorders. J Alzheimers Dis 30(s2):S15–S30

    Google Scholar 

  • Landrigan PJ et al (1999) Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect 107(suppl 3):431–437

    CAS  Google Scholar 

  • Latchney SE et al (2013) Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem 125(3):430–445

    CAS  Google Scholar 

  • Lee S-J et al (2010) Acute illnesses associated with exposure to fipronil—surveillance data from 11 states in the United States, 2001–2007. Clin Toxicol 48(7):737–744

    Google Scholar 

  • Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 12(4):733–737

    CAS  Google Scholar 

  • Leranth C et al (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci 105(37):14187–14191

    CAS  Google Scholar 

  • Li N et al (2010) Increased tau phosphorylation and beta amyloid in the hipocampus of mouse pups by early life lead exposure. Acta Biol Hung 61(2):123–134

    Google Scholar 

  • Li X et al (2012) The effect of cadmium on Aβ levels in APP/PS1 transgenic mice. Exp Ther Med 4(1):125–130

    CAS  Google Scholar 

  • Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc Natl Acad Sci 109(25):10071–10076

    CAS  Google Scholar 

  • Liu B, Hong J-S (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304(1):1–7

    CAS  Google Scholar 

  • Liu J, Goyer RA, Waalkes MP (2008) In: Klaasen CD (ed) Toxic effects of metals. Casarett and Doull’s toxicology: the basic science of poisons, seventh edition. McGraw-Hill Medical, New York, pp 931–979

    Google Scholar 

  • Lokanatha V, Sailaja P, Rajendra W (1999) In vitro kinetics of the rat brain succinate dehydrogenase inhibition by hexachlorophene. J Biochem Mol Toxicol 13(6):303–306

    CAS  Google Scholar 

  • Lui E et al (1990) Metals and the liver in Alzheimer’s disease an investigation of hepatic zinc, copper, cadmium, and metallothionein. J Am Geriatr Soc 38(6):633–639

    CAS  Google Scholar 

  • Luo Y et al (2009) Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl3 induced mouse brain. Mech Ageing Dev 130(4):248–252

    CAS  Google Scholar 

  • Ma W-L et al (2013) Urinary concentrations of parabens in Chinese young adults: implications for human exposure. Arch Environ Contam Toxicol 65(3):611–618

    CAS  Google Scholar 

  • Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int. https://doi.org/10.1155/2014/84054710.1155/2014/840547

  • Matés JM et al (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341

    Google Scholar 

  • McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Google Scholar 

  • Miodovnik A et al (2011) Endocrine disruptors and childhood social impairment. Neurotoxicology 32(2):261–267

    CAS  Google Scholar 

  • Mishra D et al (2012) Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring. Toxicol Sci 127(1):84–100

    CAS  Google Scholar 

  • Monnet-Tschudi F et al (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–118

    CAS  Google Scholar 

  • Moulton PV, Yang W (2012) Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. https://doi.org/10.1155/2012/472751

  • Mutter J et al (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinol Lett 25(5):331–339

    CAS  Google Scholar 

  • Mwila K et al (2013) The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monit Assess 185(3):2315–2327

    CAS  Google Scholar 

  • Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174(2):130–138

    CAS  Google Scholar 

  • Nasuti C et al (2007) Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229(3):194–205

    CAS  Google Scholar 

  • Negishi T et al (2003) Inhibition of staurosporine-induced neuronal cell death by bisphenol A and nonylphenol in primary cultured rat hippocampal and cortical neurons. Neurosci Lett 353(2):99–102

    CAS  Google Scholar 

  • Nielsen FH (2000) Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditioinally essential. J Trace Elem Exp Med 13(1):113–129

    CAS  Google Scholar 

  • Niño SA et al (2018) Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model. ACS Chem Neurosci 10(1):323–336

    Google Scholar 

  • O’Bryant SE et al (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8(3):861–874

    Google Scholar 

  • Olivieri G et al (2000) Mercury induces cell cytotoxicity and oxidative stress and increases β-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74(1):231–236

    CAS  Google Scholar 

  • Organization WH (2011) Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada

  • Park H-Y et al (2009) Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect 117(10):1600–1606

    CAS  Google Scholar 

  • Park H-Y et al (2010) Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study. Environ Health 9(1):51

    Google Scholar 

  • Perl D (2006) Exposure to aluminium and the subsequent development of a disorder with features of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77(7):811–811

    CAS  Google Scholar 

  • Pocar P et al (2003) Toxic effects of in vitro exposure to p-tert-octylphenol on bovine oocyte maturation and developmental competence. Biol Reprod 69(2):462–468

    CAS  Google Scholar 

  • Prasad GV, Indira K, Rajendra W (1987) Inhibition of sheep brain acetylcholinesterase by hexachlorophene. Bull Environ Contam Toxicol 38(1):139–142

    CAS  Google Scholar 

  • Prince M et al (2016) Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 8(1):23

    Google Scholar 

  • Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336(6088):1511–1513

    CAS  Google Scholar 

  • Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology 315:92–101

    CAS  Google Scholar 

  • Qizilbash N et al (2015) BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol 3(6):431–436

    Google Scholar 

  • Rahman MA et al (2020) Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08243-z

  • Rao P et al (1994) Comparative inhibition of rodent and human erythrocyte acetylcholinesterase by carbofuran and carbaryl. Pestic Biochem Physiol 48(2):79–84

    CAS  Google Scholar 

  • Raven EP et al (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37(1):127–136

    CAS  Google Scholar 

  • Rees Clayton EM et al (2010) The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003–2006. Environ Health Perspect 119(3):390–396

    Google Scholar 

  • Richardson JR et al (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71(3):284–290

    Google Scholar 

  • Ritchie GD et al (2001) A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev 4(3):223–312

    CAS  Google Scholar 

  • Rivas-Arancibia S et al (2009) Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci 113(1):187–197

    Google Scholar 

  • Rogers JT et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274(10):6421–6431

    CAS  Google Scholar 

  • Rondeau V et al (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152(1):59–66

    CAS  Google Scholar 

  • Rondeau V et al (2008) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169(4):489–496

    Google Scholar 

  • Rouimi P et al (2012) Impacts of low doses of pesticide mixtures on liver cell defence systems. Toxicol in Vitro 26(5):718–726

    CAS  Google Scholar 

  • Ruder AM et al (2014) Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health 217(2–3):176–187

    CAS  Google Scholar 

  • Schantz SL, Bowman RE (1989) Learning in monkeys exposed perinatally to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol 11(1):13–19

    CAS  Google Scholar 

  • Schneider J et al (2013) Chronic manganese exposure impairs visuospatial associative learning in non-human primates. Toxicol Lett 221(2):146–151

    CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498

    CAS  Google Scholar 

  • Shanker Sharma H, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):65–80

    Google Scholar 

  • Shao M et al (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4(7):353–361

    Google Scholar 

  • Sharma HS et al (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol 9(8):5055–5072

    CAS  Google Scholar 

  • Sharma P et al (2020) Biological signatures of Alzheimer’s disease. Curr Top Med Chem 20(9):770–781

    CAS  Google Scholar 

  • Shen X-L et al (2014) Positive relationship between mortality from Alzheimer’s disease and soil metal concentration in mainland China. J Alzheimers Dis 42(3):893–900

    CAS  Google Scholar 

  • Shih RA et al (2006) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3):483–492

    Google Scholar 

  • Shuman RM, Leech RW, Alvord EC (1974) Neurotoxicity of hexachlorophene in the human: I. A clinicopathologic study of 248 children. Pediatrics 54(6):689–695

    CAS  Google Scholar 

  • Shuman RM, Leech RW, Alvord EC (1975) Neurotoxicity of hexachlorophene in humans: II. A clinicopathological study of 46 premature infants. Arch Neurol 32(5):320–325

    CAS  Google Scholar 

  • Singh S, Li SS-L (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13(8):10143–10153

    CAS  Google Scholar 

  • Singh I et al (2013a) Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci 110(36):14771–14776

    CAS  Google Scholar 

  • Singh N et al (2013b) Organochlorine pesticide levels and risk of Alzheimer’s disease in north Indian population. Hum Exp Toxicol 32(1):24–30

    CAS  Google Scholar 

  • Smith KW et al (2013) Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect 121(11–12):1299–1305

    Google Scholar 

  • Smulders CJ et al (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193(2):139–146

    CAS  Google Scholar 

  • Solfrizzi V et al (2011) Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother 11(5):677–708

    CAS  Google Scholar 

  • Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proc Natl Acad Sci 100(19):11065–11069

    CAS  Google Scholar 

  • Steenland K et al (2006) Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 17(1):8–13

  • Stehr CM et al (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92(1):270–278

    CAS  Google Scholar 

  • Sul D et al (2009) 2, 3, 7, 8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology 255(1–2):65–71

    CAS  Google Scholar 

  • Sun X, Bromley-Brits K, Song W (2012) Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 120:62–70

    CAS  Google Scholar 

  • Sun W et al (2014) Perinatal exposure to di-(2-ethylhexyl)-phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats. Environ Toxicol 29(5):596–603

    CAS  Google Scholar 

  • Syme CD et al (2004) Copper binding to the amyloid-β (Aβ) peptide associated with Alzheimer’s disease folding, coordination geometry, pH dependence, stoichiometry, and affinity of Aβ-(1–28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279(18):18169–18177

    CAS  Google Scholar 

  • Tapiero Hernández Y, Barragán IR, Rubio AC (2013) Neurotoxic potential of trichlorfon to multiple sublethal doses in wistar rats. Acta Biol Colomb 18(3):479–488

    Google Scholar 

  • Tchounwou PB et al (2012) Heavy metal toxicity and the environment In: Luch A. (eds) Molecular, clinical and environmental toxicology. Experientia Supplementum, vol 101. Springer, Basel, pp 133–164

  • Téllez-Rojo MM et al (2013) Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ 461:386–390

    Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619

    CAS  Google Scholar 

  • Thompson C et al (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9(1):1–7

    CAS  Google Scholar 

  • Tisch U et al (2013) Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 8(1):43–56

    CAS  Google Scholar 

  • Torres-Sánchez L et al (2012) Prenatal p, p-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environ Health Perspect 121(2):263–268

    Google Scholar 

  • Tröster AI, Ruff RM, Watson DP (1991) Dementia as a neuropsychological consequence of chronic occupational exposure to polychlorinated biphenyls (PCBs). Arch Clin Neuropsychol 6(4):301–318

    Google Scholar 

  • Trudeau VL et al (2002) Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina. Environ Health Perspect 110(3):269–275

    CAS  Google Scholar 

  • Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1(2):132–147

    Google Scholar 

  • Ullrich C, Humpel C (2009) Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model. Neurochem Res 34(12):2147

    CAS  Google Scholar 

  • Vaiserman A (2014) Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis 5(6):419

    Google Scholar 

  • van Norden AG et al (2012) Dementia: Alzheimer pathology and vascular factors: from mutually exclusive to interaction. Biochim Biophys Acta (BBA) Mol Basis Dis 1822(3):340–349

    Google Scholar 

  • Veldhoen N et al (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80(3):217–227

    CAS  Google Scholar 

  • Venkatesan AK, Halden RU (2013) National inventory of alkylphenol ethoxylate compounds in US sewage sludges and chemical fate in outdoor soil mesocosms. Environ Pollut 174:189–193

    CAS  Google Scholar 

  • Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252

    CAS  Google Scholar 

  • Viaene M et al (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57(1):19–27

    CAS  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2003) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192(2):95–106

    CAS  Google Scholar 

  • Walton J, Wang M-X (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103(11):1548–1554

    CAS  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev. https://doi.org/10.1155/2013/898034

  • Wang G et al (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res 28(10):2135–2140

    CAS  Google Scholar 

  • Ward N, Mason J (1987) Neutron activation analysis techniques for identifying elemental status in Alzheimer’s disease. J Radioanal Nucl Chem 113(2):515–526

    CAS  Google Scholar 

  • Waseem Bihaqi S, Zawia NH (2012) Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 9(5):555–562

    Google Scholar 

  • Watanabe H et al (2004) Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol. J Mol Endocrinol 33(1):243–252

    CAS  Google Scholar 

  • Weisskopf MG et al (2007) Cumulative lead exposure and cognitive performance among elderly men. Epidemiology 18(1):59–66

    Google Scholar 

  • Wells E et al (2014) Association of selenium and copper with lipids in umbilical cord blood. J Dev Orig Health Dis 5(4):281–287

    CAS  Google Scholar 

  • Wenstrup D, Ehman WD, Markesbery WR (1990) Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res 533(1):125–131

    CAS  Google Scholar 

  • Wojcik DP et al (2006) Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting. Neuroendocrinol Lett 27:415–423

    CAS  Google Scholar 

  • Wu J et al (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28(1):3–9

    CAS  Google Scholar 

  • Xu G et al (2013a) 2, 3, 7, 8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. Neurotoxicology 37:63–73

    CAS  Google Scholar 

  • Xu H et al (2013b) Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull Environ Contam Toxicol 91(6):635–639

    CAS  Google Scholar 

  • Xu W et al (2015) Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(12):1299–1306

    Google Scholar 

  • Yang X et al (2014) Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 229(1):240–249

    CAS  Google Scholar 

  • Yegambaram M et al (2015) Role of environmental contaminants in the etiology of Alzheimer’s disease: a review. Curr Alzheimer Res 12(2):116–146

    CAS  Google Scholar 

  • Yeo M et al (2013) Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci 110(11):4315–4320

    CAS  Google Scholar 

  • Yueh M-F et al (2012) Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha. PLoS One 7(6):e37705

    CAS  Google Scholar 

  • Ze Y et al (2014) Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A 102(2):470–478

    Google Scholar 

  • Zhu X et al (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 9(2):147–153

    Google Scholar 

  • Zhu X et al (2007) Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 64(17):2202–2210

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reyaz Hassan Mir or Mubashir Hussain Masoodi.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, R.H., Sawhney, G., Pottoo, F.H. et al. Role of environmental pollutants in Alzheimer’s disease: a review. Environ Sci Pollut Res 27, 44724–44742 (2020). https://doi.org/10.1007/s11356-020-09964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09964-x

Keywords

Navigation