Skip to main content
Log in

Lethal and sublethal effects of the natural and healthy spinosad-based formulation Tracer™ on tadpoles of two neotropical species

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper presents the first acute toxicity data of the natural insecticide spinosad in amphibians. The sensitivity of two neotropical sympatric anuran species, Boana pulchella and Rhinella arenarum, to spinosad-based formulation Tracer™ was evaluated. Lethal effects are reported in tadpoles of B. pulchella stage 25 between 2.81 and 35.44 mg spinosad/L, while for the same concentration range no lethal effects were detected in tadpoles of R. arenarum of the same stage. In addition, Tracer™ produced sublethal effects at the individual level on the swimming activity, morphology (growth and presence of abnormalities), and development of B. pulchella from 2.81 to 5.78 mg spinosad/L, while in R. arenarum effects were only detected in the swimming activity and growth from 2.78 and 6.22 mg/L, respectively. At the biochemical level, Tracer™ produced inhibition of different enzymatic activities, among them, catalase activity at 2.81 mg spinosad/L, glutathione S- transferase activity from 2.81 to 2.98 mg spinosad/L, and acetylcholinesterase activity at 2.81 mg spinosad/L. These findings allow us to conclude that B. pulchella is more sensitive than R. arenarum to spinosad-based formulation Tracer™. The effects demonstrated here are not consistent with those expected since spinosad is supposed to be an environmental healthy alternative. This paper provides useful and necessary information to implement regulations on the use of new compounds entering the market and its associated risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adak, T and Mukherjee, I. (2016) Investigating role of abiotic factors on spinosad dissipation, Bulletin of environmental contamination and toxicology. Springer US, 96(1), pp. 125–129. doi: https://doi.org/10.1007/s00128-015-1644-z

  • Agostini MG, Natale GS, Ronco AE (2009) Impact of endosulphan and cypermethrin mixture on amphibians under field use for biotech soya bean production. International Journal of Environment and Health 3(4):379–389. https://doi.org/10.1504/IJENVH.2009.030109

    Article  CAS  Google Scholar 

  • Agostini MG, Natale S, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19(8):1545–1550. https://doi.org/10.1007/s10646-010-0539-3

    Article  CAS  Google Scholar 

  • Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57(4):872–882. https://doi.org/10.1111/j.0014-3820.2003.tb00298.x

    Article  Google Scholar 

  • ASTM (2007) Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians, in Biological effects and environmental fate, pp. 729–796

  • Attademo AM, Peltzer P, Lajmanovich R, Cabagna-Zenklusen M, Junges C, Basso A (2014) Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina. Environ Monit Assess 186(1):635–649. https://doi.org/10.1007/s10661-013-3404-z

    Article  CAS  Google Scholar 

  • Attademo, AM; Sanchez-Hernandez, JC; Lajmanovich, RC; Peltzer, PM; Junges, C and Attademo, AM. (2017) Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to chlorpyrifos, Ecotoxicology and Environmental Safety. Elsevier, 135, pp. 10–16. doi: https://doi.org/10.1016/j.ecoenv.2016.09.012

  • Bach N, Natale GS, Somoza G, Ronco AE (2016) Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the south-American creole frog, Leptodactylus latrans, Environmental Science and Pollution Research. Environ Sci Pollut Res 23(23):23959–23971. https://doi.org/10.1007/s11356-016-7631-z

    Article  CAS  Google Scholar 

  • Bantle J, Dumont JN, Finch RA, Linder G, Fort DJ (1996) Atlas of abnormalities. A Guide for the Performance of FETAX, p 72

  • Barja-Fernández, S, Míguez, JM. and Álvarez-Otero, R. (2013) Histopathological effects of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in the gills, intestine and liver of turbot (Psetta maxima), Ecotoxicol Environ Saf. Elsevier, 95, pp. 60–68. doi: https://doi.org/10.1016/j.ecoenv.2013.05.028

  • Barreto E, Salgado Costa C, Demetrio P, Lascano C, Venturino A, Natale GS (2020) Sensitivity of Boana pulchella (Anura: Hylidae) tadpoles to environmentally relevant concentrations of Chlorpyrifos: effects at the individual and biochemical levels. Environ Toxicol Chem 39(4):834–841. https://doi.org/10.1002/etc.4664

  • Beebee T, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125(3):271–285. https://doi.org/10.1016/j.biocon.2005.04.009

  • Benincasa C, Perri E, Iannotta N, Scalercio S (2011) LC/ESI-MS/MS method for the identification and quantification of spinosad residues in olive oils. Food Chem 125(3):1116–1120. https://doi.org/10.1016/j.foodchem.2010.09.111

    Article  CAS  Google Scholar 

  • Bernabò I, Sperone E, Tripepi S, Brunelli E (2011) Toxicity of chlorpyrifos to larval Rana dalmatina: acute and chronic effects on survival, development, growth and gill apparatus. Arch Environ Contam Toxicol 61(4):704–718. https://doi.org/10.1007/s00244-011-9655-1

    Article  CAS  Google Scholar 

  • Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8(1):60–71. https://doi.org/10.1046/j.1523-1739.1994.08010060.x

  • Blaustein AR, Kiesecker JM (2002) Complexity in conservation : lessons from the global decline of amphibian populations. Ecol Lett 5:597–608. https://doi.org/10.1046/j.1461-0248.2002.00352.x

  • Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9(2):123–140 Available at: http://www.blackwellpublishing.com/journals/ddi

    Article  Google Scholar 

  • Blaustein AR, Han BA, Relyea RA, Johnson PJ, Buck JC, Gervasi SS, Kats LB (2011) The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 1223(1):108–119. https://doi.org/10.1111/j.1749-6632.2010.05909.x

    Article  Google Scholar 

  • Boone MD, Bridges CM (2001) Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide. Oecologia 129(4):518–524. https://doi.org/10.1007/s004420100749

    Article  Google Scholar 

  • Borth P, McCall PJ, Bischoff RF, Thompson GD, DowElanco (1996a) The environmental and mammalian safety profile of naturalyte insect control. Sanitation in Food Processing. https://doi.org/10.1016/b978-0-12-700660-4.50013-0

  • Borth P, McCall PJ, Bischoff RF, Thompson GD (1996b) Insect control. Sanitation in Food Processing. https://doi.org/10.1016/b978-0-12-700660-4.50013-0

  • Breslin WJ, Marty MS, Vedula U, Liberacki AB, Yano BL (2000) Developmental toxicity of Spinosad administered by gavage to CD® rats and New Zealand White rabbits. Food Chem Toxicol 38(12):1103–1112. https://doi.org/10.1016/S0278-6915(00)00108-3

    Article  CAS  Google Scholar 

  • Bret B, Larson LL, Schoonover JR, Sparks TC, Thompson GD (1997) Biological properties of spinosad. Down to Earth 52:6–13

    Google Scholar 

  • Brodeur JC, Svartz G, Perez-Coll CS, Marino DJ, Herkovits J (2009) Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: non-monotonous acceleration of the time to climax and delayed tail resorption. Aquat Toxicol 91(2):161–170. https://doi.org/10.1016/j.aquatox.2008.07.003

    Article  CAS  Google Scholar 

  • Brodeur, JC; Suarez, RP; Natale, GS; Ronco, AE; Zaccagnini, ME. (2011) Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas’, Ecotoxicol Environ Saf. Elsevier, 74(5), pp. 1370–1380. doi: https://doi.org/10.1016/j.ecoenv.2011.04.024

  • Brodeur JC, Poliserpi MB, D'Andrea MF, Sánchez M (2014) Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum. Chemosphere 112:70–76. https://doi.org/10.1016/j.chemosphere.2014.02.065

    Article  CAS  Google Scholar 

  • Brodeur, JC; Sanchez, M; Castro, L; Rojas, DE; Cristos, D; Damonte, MJ; Poliserpi, MB; D'Andrea, MF; Andriulo, AE. (2017) Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina, Chemosphere. Elsevier Ltd, 185, pp. 36–46. doi: https://doi.org/10.1016/j.chemosphere.2017.06.129

  • Brunelli E, Bernabò I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepi S (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91(2):135–142. https://doi.org/10.1016/j.aquatox.2008.09.006

    Article  CAS  Google Scholar 

  • Carey, S; Crk, T; Flaherty, C; Hurley, P; Hetrick, J; Moore, K; Termes, S. (2008) Risks of glyphosate use to federally threatened California red-legged frog (Rana aurora draytonii). Pesticide Effects Determination. Pesticide Effects Determination Environmental Fate and Effects Division Office of Pesticide Programs, pp. 1–184

  • Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43(1):1–16. https://doi.org/10.1146/annurev.ento.43.1.1

    Article  CAS  Google Scholar 

  • Cei, J. (1980) Amphibians of Argentina. Italian Journal of Biology

  • Colin, N; Porte, C; Fernandes, D; Barata, C; Padrós, F; Carrassón, M; Monroy, M; Cano-Rocabayera, O; de Sostoa, A; Piña, B; Maceda-Veiga, A. (2016) Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers, Science of the Total Environment. Elsevier B.V., 540, pp. 307–323. doi: https://doi.org/10.1016/j.scitotenv.2015.06.099

  • Colombo A, Orsi F, Bonfanti P (2005) Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae. Chemosphere 61(11):1665–1671. https://doi.org/10.1016/j.chemosphere.2005.04.005

    Article  CAS  Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14(6):1892–1902. https://doi.org/10.1890/03-5224

    Article  Google Scholar 

  • Dayan, FE., Cantrell, CL. and Duke, SO. (2009) Natural products in crop protection, Bioorganic & Medicinal Chemistry. Elsevier Ltd, 17(12), pp. 4022–4034. doi: https://doi.org/10.1016/j.bmc.2009.01.046

  • Deardorff AD, Stark JD (2009) Acute toxicity and hazard assessment of spinosad and R-11 to three cladoceran species and Coho salmon. Bull Environ Contam Toxicol 82(5):549–553. https://doi.org/10.1007/s00128-009-9643-6

    Article  CAS  Google Scholar 

  • Denoël M, D'Hooghe B, Ficetola GF, Brasseur C, De Pauw E, Thomé JP, Kestemont P (2012) Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology 21(4):1240–1250. https://doi.org/10.1007/s10646-012-0878-3

    Article  CAS  Google Scholar 

  • Devine GJ, Furlong MJ (2007) Insecticide use: contexts and ecological consequences. Agric Hum Values 24(3):281–306. https://doi.org/10.1007/s10460-007-9067-z

    Article  Google Scholar 

  • Duchet C, Inafuku MM, Caquet T, Larroque M, Franquet E, Lagneau C, Lagadic L (2011) Chitobiase activity as an indicator of altered survival, growth and reproduction in Daphnia pulex and Daphnia magna (Crustacea: Cladocera) exposed to spinosad and diflubenzuron. Ecotoxicol Environ Saf 74(4):800–810. https://doi.org/10.1016/j.ecoenv.2010.11.001

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Valentino A, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Ezemonye, L and Tongo, I. (2010) Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis), Chemosphere. Elsevier Ltd, 81(2), pp. 214–217. doi: https://doi.org/10.1016/j.chemosphere.2010.06.039

  • Ferrari A, Anguiano L, Lascano C, Sotomayor V, Rosenbaum E, Venturino A (2008) Changes in the antioxidant metabolism in the embryonic development of the common South American toad Bufo arenarum: differential responses to pesticide in early embryos and autonomous-feeding larvae. J Biochem Mol Toxicol 22(4):259–267. https://doi.org/10.1002/jbt.20236

    Article  CAS  Google Scholar 

  • Ferrari A, Lascano C, Anguiano OL, Pechen de D’Angelo A, Venturino A (2009) Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel. Aquat Toxicol 93(1):37–44. https://doi.org/10.1016/j.aquatox.2009.03.003

    Article  CAS  Google Scholar 

  • Ferrari A, Lascano C, Pechen de D’Angelo A, Venturino A (2011) Sublethal concentrations of azinphos-methyl induce biochemical and morphological alterations in Rhinella arenarum embryos. Chem Ecol 27(6):557–568

    Article  Google Scholar 

  • Gil P, Alonso-Bedate M, Barja de Quiroga G (1987) Different levels of hyperoxia reversibly induce catalase activity in amphibian tadpoles. Free Radic Biol Med 3:137–146

    Article  CAS  Google Scholar 

  • Gosner K (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16(3):183–190

    Google Scholar 

  • Hammond JI, Jones DK, Stephens PR, Relyea R (2012) Phylogeny meets ecotoxicology: evolutionary patterns of sensitivity to a common insecticide. Evol Appl 5(6):593–606. https://doi.org/10.1111/j.1752-4571.2011.00237.x

    Article  CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione s-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Crit Rev Biochem Mol Biol 30(6):445–520. https://doi.org/10.3109/10409239509083491

    Article  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

    Article  CAS  Google Scholar 

  • Hayes T, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213(6):921–933. https://doi.org/10.1242/jeb.040865

    Article  CAS  Google Scholar 

  • Horat P, Semlitsch RD (1994) Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociobiol 34(6):393–401. https://doi.org/10.1007/BF00167330

    Article  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51(1):45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

    Article  CAS  Google Scholar 

  • Kirst, H; Michel, KH; Mynderase, J; Chio, E; Yao, RC; Nakasukasa, WM; Boeck, LD; Occlowitz, JL; Paschal, JW; Deeter, J; Thompson, GD (1992) Discovery, isolation, and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides, Synthesis and Chemistry of Agrochemicals III, pp. 214–225. doi: https://doi.org/10.1021/bk-1992-0504.ch020

  • Kwet A, Aquino L, Lavilla E, di Tada I (2004a) Hypsiboas pulchellus. Species, The IUCN Red List of Threatened

    Google Scholar 

  • Kwet A, Steffen R, Silvano D, Úbeda C, Baldo D, Di Tada I (2004b) Rhinella arenarum. Species, The IUCN Red List of Threatened

    Google Scholar 

  • Lajmanovich R, Peltzer P, Junges C, Attademo A (2010) Activity levels of B-esterases in the tadpoles of 11 species of frogs in the middle Paraná River floodplain: implication for ecological risk assessment of soybean crops. Ecotoxicol Environ Saf 73(7):1517–1524. https://doi.org/10.1016/j.ecoenv.2010.07.047

    Article  CAS  Google Scholar 

  • Lascano, C; Ferrari, A; Gauna, LE; Cocca, C; Cochón, A; Verrengia, N; Venturino, A. (2011) Organophosphorus insecticides affect normal polyamine metabolism in amphibian embryogenesis, Pestic Biochem Physiol. Elsevier Inc, 101(3), pp. 240–247. doi: https://doi.org/10.1016/j.pestbp.2011.10.001

  • Lehman, CM., and Williams, BK. 2010. Effects of current-use pesticides on amphibians. In Ecotoxicology of Amphibians and Reptiles, eds. Donald W. Sparling, Greg Linder, Christine A. Bishop, and Sherry Krest. , 944

  • Liendro, N; Ferrari, A; Mardirosian, M; Lascano, C; Venturino, A. (2015) Toxicity of the insecticide chlorpyrifos to the South American toad Rhinella arenarum at larval developmental stage, Environmental Toxicology and Pharmacology. Elsevier B.V., 39(2), pp. 525–535. doi: https://doi.org/10.1016/j.etap.2014.12.022

  • Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  Google Scholar 

  • Mayes M, Thompson G, Husband B, Miles M (2003) Spinosad toxicity to pollinators and associated risk. Rev Environ Contam Toxicol 179:37–71

    CAS  Google Scholar 

  • Mertz FP, Yao RC (1990) Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. Int J Syst Bacteriol 40(1):34–39. https://doi.org/10.1099/00207713-40-1-34

    Article  Google Scholar 

  • Miles M, Dutton R (2003) Testing the effects of spinosad to predatory mites in laboratory, extended laboratory, semi-field and field studies. Pesticides and Beneficial Organisms 26(5):9–20

    Google Scholar 

  • Natale G (2006) Análisis ecotoxicológico de una comunidad de anuros de la Región Pampeana. Universidad Nacional de La Plata

  • Natale, GS and Ronco, AE. (2003) Impacto del uso de pesticidas asociado a la siembra directa sobre especies no blanco. Anuros autóctonos., in Conferencia internacional usos multiples del agua: para la vida y el desarrollo sostenible

  • Natale GS, Vera-Candioti J, Ruiz de Arcaute C, Soloneski S, Larramendy ML, Ronco AE (2018) Lethal and sublethal effects of the pirimicarb-based formulation Aficida ® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicology and Environmental Safety Elsevier Inc 147(September 2017):471–479. https://doi.org/10.1016/j.ecoenv.2017.09.007

    Article  CAS  Google Scholar 

  • Nikoloff, N; Natale, GS; Marino, D; Soloneski, S; Larramendy, ML. (2014) Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae), Ecotoxicol Environ Saf. Elsevier, 100(1), pp. 275–281. doi: https://doi.org/10.1016/j.ecoenv.2013.10.021

  • Orr, N; Shaffner, AJ; Richey, K; Crouse, G. (2009) Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites, Pestic Biochem Physiol. Elsevier Inc., 95(1), pp. 1–5. doi: https://doi.org/10.1016/j.pestbp.2009.04.009

  • Pandey S, Ahmad I, Parvez S, Bin-Hafeez B, Haque R, Raisuddin S (2001) Effect of endosulfan on antioxidants of freshwater fish Channa punctatus bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Arch Environ Contam Toxicol 41(3):345–352. https://doi.org/10.1007/s002440010258

    Article  CAS  Google Scholar 

  • Peltzer PM, Lajmanovich RC, Attademo A, Beltzer A (2006) Diversity of anurans across agricultural ponds in Argentina. Biodivers Conserv. https://doi.org/10.1007/s10531-004-2940-9

  • Peltzer PM, Lajmanovich RC, Sánchez-Hernandez JC, Cabagna M, Attademo A, Bassó A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70(1):185–197. https://doi.org/10.1016/j.ecoenv.2007.06.005

    Article  CAS  Google Scholar 

  • Pereira B, Caixeta E, Freitas P, Santos V, Limongi J, de Campos Júnior E, Olegário Campos CF, Souto H, Rodrigues T, Morelli S (2016) Toxicological assessment of spinosad: implications for integrated control of Aedes aegypti using larvicides and larvivorous fish. Journal of Toxicology and Environmental Health - Part A: Current Issues 79(12):477–481. https://doi.org/10.1080/15287394.2016.1176974

    Article  CAS  Google Scholar 

  • Pérez-Coll, CS, Sztrum, AA and Herkovits, J. (2008) Nickel tissue residue as a biomarker of sub-toxic exposure and susceptibility in amphibian embryos, Chemosphere. Elsevier Ltd, 74(1), pp. 78–83. doi: https://doi.org/10.1016/j.chemosphere.2008.09.023

  • Pérez-Iglesias JM, Ruiz de Arcaute C, Nikoloff N, Durt L, Soloneski S, Natale GS, Larramendy ML (2014) The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles. Ecotoxicol Environ Saf 104:120–126

    Article  Google Scholar 

  • Pérez-Iglesias, JM; Ruiz de Arcaute, C; Natale, GS; Soloneski, S; Larramendy, ML. (2017) Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III- and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae), Ecotoxicology and Environmental Safety. Elsevier Inc., 142(3), pp. 503–508. doi: https://doi.org/10.1016/j.ecoenv.2017.04.054

  • Piner P, Üner N (2011) Organic insecticide spinosad causes in vivo oxidative effects in the brain of Oreochromis niloticus. Environ Toxicol 26:146–152. https://doi.org/10.1002/tox

    Article  CAS  Google Scholar 

  • Piner, P and Üner, N. (2012) In vivo acetylcholinesterase inhibition in the tissues of spinosad exposed Oreochromis niloticus, Environmental Toxicology and Pharmacology. Elsevier B.V., 34(2), pp. 473–477. doi: https://doi.org/10.1016/j.etap.2012.06.012

  • Piner, P and Üner, N. (2013) Oxidative stress and apoptosis was induced by bio-insecticide spinosad in the liver of Oreochromis niloticus, Environmental Toxicology and Pharmacology

  • Rand, GM. (1995) Effects, environmental fate and risk assessment, in Fundamentals of Aquatic Toxicology. 2nd edn, p. 1148

  • Relyea R (2004) Growth and survival of five amphibian species exposed to combinations of pesticides. Environ Toxicol Chem 23(7):1737–1742. https://doi.org/10.1897/03-493

    Article  CAS  Google Scholar 

  • Ruiz De Arcaute C, Pérez-Iglesias JM, Nikoloff N, Natale GS, Soloneski S, Larramendy ML (2012) Influence of existing site contamination on sensitivity of Rhinella fernandezae (Anura, Bufonidae) tadpoles to Lorsban48E formulation of chlorpyrifos. Ecotoxicology 21(8):2338–2348. https://doi.org/10.1007/s10646-012-0990-4

    Article  CAS  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Salinas ZA, Salas NE, Baraquet M, Martino AL (2015) Biomarcadores hematológicos del sapo común Bufo (Rhinella) arenarum en ecosistemas alterados de la provincia de Córdoba. Acta Toxicológica Argentina 23(1):25–35

    CAS  Google Scholar 

  • Sansiñena, JA; Peluso, L; Salgado Costa, C; Demetrio, P; Mac Loughlin, T; Marino, D; Alcalde, L; Natale, GS. (2018) Evaluation of the toxicity of the sediments from an agroecosystem to two native species, Hyalella curvispina (CRUSTACEA: AMPHIPODA) and Boana pulchella (AMPHIBIA: ANURA), as potential environmental indicators, Ecol Indic. Elsevier, 93(January), pp. 100–110. doi: https://doi.org/10.1016/j.ecolind.2018.04.061

  • Saunders D, Bret B (1997) Fate of spinosad in the environment. Down to Earth

  • Semlitsch RD, Scott DE, Pechmann HK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69(1):184–192. https://doi.org/10.2307/1943173

    Article  Google Scholar 

  • Sharma A, Srivastava A, Ram B, Srivastava P (2007) Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions. Pest Manag Sci 63:1141–1145. https://doi.org/10.1002/ps1437

    Article  CAS  Google Scholar 

  • Shugart LR, McCarthy JF, Halbrook RS (1992) Biological markers of environmental and ecological contamination: an overview. Risk Analysis: An Official Publication of the Society for Risk Analysis 12(3):353–360. https://doi.org/10.1111/j.1539-6924.1992.tb00687.x

  • Smalling, KL; Reeves, R; Muths, E; Vandever, M; Battaglin, WA; Hladik, ML; Pierce, CL. (2015) Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture, Science of the Total Environment. Elsevier B.V., 502, pp. 80–90. doi: https://doi.org/10.1016/j.scitotenv.2014.08.114

  • Soloneski S, Ruiz de Arcaute C, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23(17):17811–17821. https://doi.org/10.1007/s11356-016-6992-7

    Article  CAS  Google Scholar 

  • Sotomayor V, Lascano C, Pechen de D'Angelo AM, Venturino A (2012) Developmental and polyamine metabolism alterations in Rhinella arenarum embryos exposed to the organophosphate chlorpyrifos. Environ Toxicol Chem 31(9):2052–2058. https://doi.org/10.1002/etc.1921

    Article  CAS  Google Scholar 

  • Sotomayor, V; Chiriotto, TS; Pechen de D’Angelo, AM; Venturino, A. (2015) Biochemical biomarkers of sublethal effects in Rhinella arenarum late gastrula exposed to the organophosphate chlorpyrifos, Pestic Biochem Physiol. Elsevier Inc., 119(1), pp. 48–53. doi: https://doi.org/10.1016/j.pestbp.2015.02.006

  • Sparling, D; Linder, G; Bishop, C; Krest, S. (eds) Ecotoxicology of amphibians and reptiles. 2nd edn, p. 944

  • Stark, JD and Banks, JE. (2001). Selective pesticides: are they less hazardous to the environment?, BioScience, 51(11), p. 980. doi: https://doi.org/10.1641/0006-3568(2001)051[0980:spatlh]2.0.co;2

  • Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press https://press.princeton.edu/titles/5720.html (

  • Suarez R, Zaccagnini ME, Babbitt KJ, Calamari N, Natale GS, Cerezo A, Codugnello N, Boca T, Damonte MJ, Vera-Candioti J, Gavier-Pizarro G (2016) Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landsc Ecol. https://doi.org/10.1007/s10980-016-0426-2

  • Svartz GV, Hutler Wolkowicz IR, Perez Coll C (2014) Toxicity of endosulfan on embryo-larval development of the South American toad Rhinella arenarum. Environ Toxicol Chem 33(4):875–881. https://doi.org/10.1002/etc.2506

    Article  CAS  Google Scholar 

  • Svartz G, Aronzon C, Pérez Coll C (2016) Comparative sensitivity among early life stages of the South American toad to cypermethrin-based pesticide. Environ Sci Pollut Res 23(3):2906–2913. https://doi.org/10.1007/s11356-015-5547-7

    Article  CAS  Google Scholar 

  • Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative highperformance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334

    Article  CAS  Google Scholar 

  • Thompson DG, Sparks TC (2002) Spinosad : a green natural product for insect control. Advancing Sustainability through Green Chemistry and Engineering, pp:61–73

  • Tolledo J, Silva ET, Nunes-de-Almeida C, Toledo LF (2014) Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol J 24(4):237–243

    Google Scholar 

  • USEPA (2002) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms, U.S. Environmental Protection Agency, pp. 1–266

  • USEPA (2009) EFED risk assessment for the proposed IR-4 use of the spinosad product entrust® on pomegranate and dates, United States Environmental Protection Agency, pp. 1–85

  • Venesky MD, Wassersug RJ, Parris MJ (2010) The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 2010(3):481–486. https://doi.org/10.1643/cg-09-093

    Article  Google Scholar 

  • Vera Candioti J, Natale GS, Soloneski S, Ronco AE, Larramendy ML (2010) Sublethal and lethal effects on Rhinella arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida. Chemosphere Elsevier Ltd 78(3):249–255. https://doi.org/10.1016/j.chemosphere.2009.10.064

    Article  CAS  Google Scholar 

  • Watson GB (2001) Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons. Pestic Biochem Physiol 71(1):20–28. https://doi.org/10.1006/pest.2001.2559

    Article  CAS  Google Scholar 

  • White W, Hutchens D, Jones C, Firkins L, Paul AJ, Snyder D (2007) Therapeutic and persistent efficacy of spinosad applied as a pour-on or a topical spray against natural infestations of chewing and sucking lice on cattle. Vet Parasitol 143(3–4):329–336. https://doi.org/10.1016/j.vetpar.2006.08.037

    Article  CAS  Google Scholar 

  • Xuereb B, Chaumot A, Mons R, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda). Intrinsic variability, reference levels, and a reliable tool for field surveys. Aquat Toxicol 93(4):225–233. https://doi.org/10.1016/j.aquatox.2009.05.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from National Agency of Scientific and Technological Promotion (PICT 2015-3137) from Argentina. Bahl, Salgado Costa, D’Andrea and Sansiñena received scholarships from the Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Sebastián Natale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahl, M.F., Brodeur, J.C., Costa, C.S. et al. Lethal and sublethal effects of the natural and healthy spinosad-based formulation Tracer™ on tadpoles of two neotropical species. Environ Sci Pollut Res 28, 13524–13535 (2021). https://doi.org/10.1007/s11356-020-09808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09808-8

Keywords

Navigation