Skip to main content

Advertisement

Log in

Identification and quantification of main anthropogenic stocks and flows of potassium in Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Potassium (K), along with nitrogen and phosphorus, is an essential resource to ensure agricultural productivity and, therefore, food security around the world. However, diminishing physical reserves of potash salts and high-price volatility of potassium chloride, the main source of K to agricultural soils, has raised concerns about a K scarcity scenario, mainly in countries that depend on fertilizer imports to sustain its production. In this context, Brazil is one of the main agricultural producers in the world, having a major role in the global K flows, since the country sustains its production by a high consumption of imported K fertilizers. In order to seek opportunities to contribute to a more sustainable management of K resources, tools such as the material flow analysis (MFA) can be used to highlight the main K stocks and flows in a country scale, and identify options for reuse and recycle. This study proposed a MFA of K for Brazil, considering the base-year 2013. A total of forty-four flows and seven stocks were identified and quantified considering nine main processes related to human activity. According to the results, for the year of study, the main inputs of K in Brazil were in the form of fertilizers (4.1 × 103 Gg of K per year), and the main outputs were in the form of grain exports (9.1 × 102 Gg of K per year). Agricultural soils were the main stock for K in the country, and from the total flow of 7.3 × 103 Gg of K per year applied to soils, 67% came out as agricultural products, 13% was lost through erosion and leaching, and 20% remained in the soils. The flow of K actually consumed by the Brazilian population was 3.5 × 102 Gg of K per year, just 8.4% of the total food produced in the country. About 1.9 × 103 Gg of K per year has been lost to the environment in sewage streams and solid landfill waste. Prospects for more sustainable K management in the country are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ABRELPE (2013) Panorama dos Resíduos Sólidos no Brasil - 2013. São Paulo.

    Google Scholar 

  • Andreoli CV, Garbossa LHP, Lupatini G, Pegorini ES (2008) Wastewater sludge management: a Brazilian approach. In: Global atlas of excreta, wastewater sludge, and biosolids management: moving forward the sustainable and welcome uses a global resource. UN-Habitat, Nairobu, pp 117–130

    Google Scholar 

  • Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer, Berlin

    Book  Google Scholar 

  • Baltar CAM, Monte MB de M, Andrade MC, Moura RL (2001) Cloreto de potássio-CVRD/Mina Taquari. In: Sampaio JA, Luz AB da, Lins FF (eds) Usinas de beneficiamento de minérios do Brasiil. CETEM/MCT, Rio de Janeiro, Brazil, p 398

  • Bar-Yosef B, Magen H, Johnston AE, Kirkby EA (2015) Potassium fertilization: paradox or K management dilemma? Renew Agric Food Syst 30:115–119. https://doi.org/10.1017/S1742170514000295

    Article  Google Scholar 

  • Bertol I, Guadagnin JC, Cassol PC, Amaral AJ, Barbosa FT (2004) Perdas de fósforo e potássio por erosão hídrica em um inceptisol sob chuva natural. Rev Bras Cienc do Solo 28:485–494

    Article  CAS  Google Scholar 

  • Bittencourt S, Aisse MM, Serrat BM (2017) Gestão do uso agrícola do lodo de esgoto: estudo de caso do estado do Paraná, Brasil. Eng Sanit e Ambient 22:1129–1139. https://doi.org/10.1590/s1413-41522017156260

    Article  Google Scholar 

  • Bohdziewicz J, Cebula J, Marcisz M, et al (2015) Application of human urine from dry toilets as natural fertilizer in onion (Allium cepa L.) cultivation–an chlorophyll indicator study. In: 5th International Dry Toilet Conference

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V, Oost KV, Montanarella L, Panagos P (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8:2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Botto MP (2013) Utilização de urina humana como biofertilizante para produção de alimentos e energia: Caracterização, uso na agricultura e recuperação de nutrientes. Universidade Federal do Ceará

  • Brazil (2011) National plan for solid waste management. Brazília, Brazil

  • Brazil (2014) National system of information about sanitation: water and wastewater services diagnostic - 2013. Brasília, Brazil

  • Brunner PH, Helmut R (2011) Pratical handbook of material flow analysis

  • Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315(80):381–384. https://doi.org/10.1126/science.1136607

    Article  CAS  Google Scholar 

  • Carvalho PER (2002) Pinheiro-do-Paraná: Circular técnica 60. EMBRAPA, Colombo

    Google Scholar 

  • Cencic O, Rechberger H (2008) Material flow analysis with Software STAN. Environ Informatics Ind Ecol 18:3–7

    Google Scholar 

  • Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228. https://doi.org/10.1016/j.resconrec.2013.10.014

    Article  Google Scholar 

  • Chrispim MC, Nolasco MA (2012) Human urine as fertilizer: feasibility study of use in corn and lettuce cultivation in a university campus in Brazil. 4th Int Dry Toilet Conf 1–11

  • Company of Energy Research (EPE) (2014) Brazilian energy balance 2014: Base-year 2013. EPE, Rio de Janeiro

  • Cordell D, White S (2011) Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049. https://doi.org/10.3390/su3102027

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • Cordell D, Jackson M, White S (2013) Phosphorus flows through the Australian food system: identifying intervention points as a roadmap to phosphorus security. Environ Sci Policy 29:87–102. https://doi.org/10.1016/j.envsci.2013.01.008

    Article  CAS  Google Scholar 

  • da Cunha JF, Francisco EAB, Prochnow LI (2018) Balanço de nutrientes na agricultura brasileira no período de 2013 a 2016. Informações agronômicas 162:3–14

    Google Scholar 

  • Dalin C, Wada Y, Kastner T, Puma MJ (2017) Groundwater depletion embedded in international food trade. Nature 543:700–704. https://doi.org/10.1038/nature21403

    Article  CAS  Google Scholar 

  • Daniel TC, Sharpley AN, Lemunyon JL (1998) Agricultural phosphorus and eutrophication: a symposium overview. J Environ Qual 27:251–257. https://doi.org/10.2134/jeq1998.00472425002700020002x

    Article  CAS  Google Scholar 

  • de Araújo NC, Coura MDA, de Oliveira R et al (2015) Cultivo hidropônico de milho fertirrigado com urina humana como fonte alternativa de nutrients. Irriga 20:718–729. https://doi.org/10.15809/irriga.2015v20n4p718

    Article  Google Scholar 

  • de Oliveira MW, Trivelin PCO, Boaretto AE et al (2002) Leaching of nitrogen, potassium, calcium and magnesium in a sandy soil cultivated with sugarcane. Pesqui Agropecuária Bras 37:861–868. https://doi.org/10.1590/S0100-204X2002000600016

    Article  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)-managing systems at risk. Food and Agriculture Organization of the United Nations/ Earthscan, Rome

    Google Scholar 

  • Ferranti P (2016) Food production and ecosystem protection. Reference module in food science. Elsevier, In, pp 1–3

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2019) Statistics Division. http://www.fao.org/faostat/en. Accessed 5 Nov 2019

  • Food and Agriculture Organization of the United Nations FAO (2013) [database] Statistics Division

  • Gilbert N (2012) One-third of our greenhouse gas emissions come from agriculture. Nature. https://doi.org/10.1038/nature.2012.11708

  • Graedel TE, Lifset RJ (2016) Industrial ecology’s first decade. In: Taking stock of industrial ecology. Springer International Publishing, Cham, pp 3–20

    Chapter  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, Emanuelsson A (2013) The methodology of the FAO study: “Global food losses and food waste-extent, causes and prevention”-FAO, 2011. SIK, Goteborg

  • Hedbrant J, Sörme L (2001) Data vagueness and uncertainties in urban heavy-metal data collection. Water, Air, Soil Pollut Focus 1:43–53

    Article  Google Scholar 

  • Heffer P, Gruere A, Roberts T (2017) Assessment of fertilizer use by crop at the global level. Paris

  • Holden NM, White EP, Lange MC, Oldfield TL (2018) Review of the sustainability of food systems and transition using the Internet of Food. npj Sci Food 2:18. https://doi.org/10.1038/s41538-018-0027-3

    Article  Google Scholar 

  • Hu M, Fan B, Wang H, Qu B, Zhu S (2016) Constructing the ecological sanitation: a review on technology and methods. J Clean Prod 125:1–21. https://doi.org/10.1016/j.jclepro.2016.03.012

    Article  Google Scholar 

  • Hunke P, Mueller EN, Schröder B, Zeilhofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154–1180. https://doi.org/10.1002/eco.1573

    Article  Google Scholar 

  • IBGE (2014) Produção da extração vegetal e da silvicultura-2013. Rio de Janeiro

  • Indexmundi (2019) Commodity prices. https://www.indexmundi.com/commodities/. Accessed 6 Apr 2019

  • Indústria Brasileira de Árvores (IBA) (2014) Ibá 2014. IBÁ, São Paulo

  • International Fertilizer Industry Association IFA (2013) [database] IFASTAT

  • International Plant Nutrition Institute (IPNI) (1998) Manual internacional de fertilidade do solo, 2nd edn. POTAFOS, Piracicaba

    Google Scholar 

  • Jasinski JSM (2019) Potash, mineral commodity summaries

  • Johansson M, Jönsson H, Höglund C, et al (2001) Urine separation-closing the nutrient cycle. Final Rep R&D Proj Source-Separated Hum Urin-a Futur source Fertil Agric Stock Reg

  • Jönsson H, Baky A, Jeppsson U et al (2005) Composition of urine, faeces, greywater and bio-waste-for utilisation in the URWARE model. Urban Water, Gothenburg

    Google Scholar 

  • Khan S, Tariq R, Yuanlai C, Blackwell J (2006) Can irrigation be sustainable? Agric Water Manag 80:87–99. https://doi.org/10.1016/j.agwat.2005.07.006

    Article  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR (2014) The potassium paradox: implications for soil fertility, crop production and human health. Renew Agric Food Syst 29:3–27. https://doi.org/10.1017/S1742170513000318

    Article  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822. https://doi.org/10.1038/35093585

    Article  CAS  Google Scholar 

  • Kinpara DI (2003) A importância Estratégica do Potássio para o Brasil. Embrapa Cerrados, Planaltina

    Google Scholar 

  • Kulaif Y (2009) Perfil Do Potássio (RT 52). Ministério de Minas e Energia

    Google Scholar 

  • Laner D, Rechberger H, Astrup T (2014) Systematic evaluation of uncertainty in material flow analysis. J Ind Ecol 18:859–870. https://doi.org/10.1111/jiec.12143

    Article  CAS  Google Scholar 

  • Laner D, Feketitsch J, Rechberger H, Fellner J (2016) A novel approach to characterize data uncertainty in material flow analysis and its application to plastics flows in Austria. J Ind Ecol 20:1050–1063. https://doi.org/10.1111/jiec.12326

    Article  Google Scholar 

  • Machado MF d S (2001) A situação brasileira dos biossólidos. Universidade Estadual de Campinas

  • Malavolta E (2006) Manual de nutrição mineral de plantas. Agronômica Ceres, São Paulo

    Google Scholar 

  • Malavolta E, de Freitas Jr E, Andreola F et al (1980) Efeitos dos excessos de alumínio, cloro e manganês em dois cultivares de soja (Glycine max (L.) Merrill). An da Esc Super Agric Luiz Queiroz 37:343–351. https://doi.org/10.1590/s0071-12761980000100022

    Article  CAS  Google Scholar 

  • Manning DAC (2015) How will minerals feed the world in 2050? Proc Geol Assoc 126:14–17. https://doi.org/10.1016/j.pgeola.2014.12.005

    Article  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  • Merten GH, Minella JPG (2013) The expansion of Brazilian agriculture: soil erosion scenarios. Int Soil Water Conserv Res 1:37–48. https://doi.org/10.1016/S2095-6339(15)30029-0

    Article  Google Scholar 

  • Ministério Público Federal (2016) MPF/AM recomenda o cancelamento de licença prévia para as atividades da mineradora Potássio do Brasil, em Autazes

  • Nascimento RL, Miranda LA (2015) Exploração de potássio no Brasil. Câmara dos deputados, Brasília

    Google Scholar 

  • Nascimento M, Monte MBDM, Loureiro FEL (2008) Agrominerais–Potássio. In: da Luz AB, Lins FAF (eds) Rochas e Minerais Industriais. CETEM/MCT, Rio de Janeiro, p 867

    Google Scholar 

  • National Department of Mineral Production (DNPM) (2010) Brazilian mineral yearbook-2010. Brasília, Brazil

  • National Department of Mineral Production (DNPM) (2013a) Informe mineral-1/2013. Mining National Agency, Brasília

  • National Department of Mineral Production (DNPM) (2013b) Informe mineral-2/2013. Mining National Agency, Brasília

  • National Department of Mineral Production (DNPM) (2014) Mineral summary. Mining National Agency, Brasília

  • National Department of Mineral Production (DNPM) (2017) Minneral summary. ANM, Brasília

  • National Department of Mineral Production (DNPM) (2018a) Mineral report-1/2018. National Mining Agency, Brasília

  • National Department of Mineral Production (DNPM) (2018b) Mineral report-2/2018. National Mining Agency, Brasília

  • Nogueira D (2016) Vale vende ativos de fertilizantes para Mosaic por US$ 2,5 bilhões. O Globo

    Google Scholar 

  • Nogueira MAF d S, Garcia MDS (2014) Gestão dos resíduos do setor industrial sucroenergético: estudo de caso de uma usina no municípo de Rio Brilhante, Mato Grosso do Sul. Rev Eletrônica em Gestão, Educ e Tecnol Ambient 17:3275–3283. https://doi.org/10.5902/2236117010444

    Article  Google Scholar 

  • Observatory of Economic Complexity (OEC) (2019) Visualizations. https://oec.world/en/. Accessed 5 Oct 2019

  • Oliveira JT d S, Hellmeister JC, Tomazello Filho M (2005) Variação do teor de umidade e da densidade básica na madeira de sete espécies de eucalipto. Rev Árvore 29:115–127. https://doi.org/10.1590/S0100-67622005000100013

    Article  Google Scholar 

  • Palermo GP d M, Latorraca JV d F, Severo ETD et al (2013) Delimitação entre os lenhos juvenil e adulto de Pinus elliottii engelm. Rev Árvore 37:191–200. https://doi.org/10.1590/S0100-67622013000100020

    Article  Google Scholar 

  • Patzek TW, Pimentel D (2005) Thermodynamics of energy production from biomass. CRC Crit Rev Plant Sci 24:327–364. https://doi.org/10.1080/07352680500316029

    Article  CAS  Google Scholar 

  • Paul AA, Southgate DAT (1978) The composition of foods, 4th edn. HMSO, London

    Google Scholar 

  • Pereira DGC, Santana IA, Megda MM, Megda MXV (2019) Potassium chloride: impacts on soil microbial activity and nitrogen mineralization. Ciência Rural 49. https://doi.org/10.1590/0103-8478cr20180556

  • Potash and Phosphate Institute (PPI) (1995) International soil fertility manual. Potash & Phosphate Institute, Norcross

    Google Scholar 

  • Potássio do Brasil Ltda. (2019) Quem somos? http://www.potassiodobrasil.com.br/quem-somos. Accessed 17 Apr 2019

  • Public Health England (PHE) (2019) McCance and Widdowson’s the composition of foods integrated dataset 2019

  • Rechberger H, Cencic O, Frühwirth R (2014) Uncertainty in material flow analysis. J Ind Ecol 18:159–160. https://doi.org/10.1111/jiec.12087

    Article  Google Scholar 

  • Rose C, Parker A, Jefferson B, Cartmell E (2015) The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 45:1827–1879. https://doi.org/10.1080/10643389.2014.1000761

    Article  CAS  Google Scholar 

  • Rossetto R, Santiago AD (2009) Adubação: resíduos alternativos. In: EMBRAPA

  • Rupe JC, Widick JD, Sabbe WE et al (2000) Effect of chloride and soybean cultivar on yield and the development of sudden death syndrome, soybean cyst nematode, and southern blight. Plant Dis 84:669–674. https://doi.org/10.1094/PDIS.2000.84.6.669

    Article  CAS  Google Scholar 

  • Saarela K-E, Harju L, Lill J-O et al (2002) Thick-target PIXE analysis of trace elements in wood incoming to a pulp mill. Holzforschung 56:380–387. https://doi.org/10.1515/HF.2002.060

    Article  CAS  Google Scholar 

  • Simha P, Ganesapillai M (2017) Ecological sanitation and nutrient recovery from human urine: how far have we come? A review Sustain Environ Res. https://doi.org/10.1016/j.serj.2016.12.001

  • Sipert S, Cohim EB (2019) A phosphorus flow analysis of Brazil. Environ Eng Sci ees.2019.0264. https://doi.org/10.1089/ees.2019.0264

  • Sokka L, Antikainen R, Kauppi P (2004) Flows of nitrogen and phosphorus in municipal waste: a substance flow analysis in Finland. Prog Ind Ecol An Int J 1:165. https://doi.org/10.1504/PIE.2004.004677

    Article  CAS  Google Scholar 

  • Steffen W, Broadgate W, Deutsch L et al (2015) The trajectory of the anthropocene: the great acceleration. Anthr Rev 2:81–98. https://doi.org/10.1177/2053019614564785

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci 96:5995–6000. https://doi.org/10.1073/pnas.96.11.5995

    Article  CAS  Google Scholar 

  • Tilman D (2001) Forecasting agriculturally driven global environmental change. Science 292(80):281–284. https://doi.org/10.1126/science.1057544

    Article  CAS  Google Scholar 

  • Tilman D, Clark M, Williams DR et al (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81. https://doi.org/10.1038/nature22900

    Article  CAS  Google Scholar 

  • Tuantet K, Temmink H, Zeeman G et al (2014) Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res 55:162–174. https://doi.org/10.1016/j.watres.2014.02.027

    Article  CAS  Google Scholar 

  • UNEP, IFA (2001) Environmental aspects of phosphate and potash mining United Nations Environment Programme International Fertilizer Industry Association

  • United Nations (UN) (2019) World population prospects 2019, Department of Economic and Social Affairs. World Population Prospects 2019 (ST/ESA/SER.A/423)

  • United Nations World Water Assessment Programme (WWAP) (2017) Wastewater: the untapped resource. UNESCO, Paris

    Google Scholar 

  • United States Department of Agriculture (USDA) (2019) National agriculture statistics service. https://www.nass.usda.gov/. Accessed 20 May 2019

  • Vieira Megda MX, Mariano E, Leite JM et al (2014) Chloride ion as nitrification inhibitor and its biocidal potential in soils. Soil Biol Biochem 72:84–87. https://doi.org/10.1016/j.soilbio.2014.01.030

    Article  CAS  Google Scholar 

  • Viera M, Schumacher MV, Darlan E, Bonacina M (2011) Biomassa e nutrientes removidos no primeiro desbaste de um povoamento de Pinus taeda L. em Cambará do Sul, RS. Rev Árvore 35:371–379

    Article  Google Scholar 

  • von Sperling M (2005) Introdução à qualidade das águas e ao tratamento de esgotos: princípios do tratamento biológico de águas residuárias. Departamento de Engenharia Sanitária e. Ambiental – UFMG, Belo Horizonte

    Google Scholar 

  • Walan P (2013) Modeling of peak phosphorus: a study of bottlenecks and implications for future production. Uppsala University

  • Weidema BP, Wesnæs MS (1996) Data quality management for life cycle inventories-an example of using data quality indicators. J Clean Prod 4:167–174. https://doi.org/10.1016/S0959-6526(96)00043-1

    Article  Google Scholar 

  • Werner C, Panesar A, Rüd SB, Olt CU (2009) Ecological sanitation: principles, technologies and project examples for sustainable wastewater and excreta management. Desalination 248:392–401. https://doi.org/10.1016/j.desal.2008.05.080

    Article  CAS  Google Scholar 

  • Withers PJA, Rodrigues M, Soltangheisi A et al (2018) Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci Rep:1–13. https://doi.org/10.1038/s41598-018-20887-z

  • Zanchetta PG (2007) Recuperação e tratamento da urina humana para uso agrícola. Universidade Federal do Espírito Santo

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Sipert.

Additional information

Responsible editor: Eyup Dogan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipert, S., Cohim, E. & do Nascimento, F.R.A. Identification and quantification of main anthropogenic stocks and flows of potassium in Brazil. Environ Sci Pollut Res 27, 32579–32593 (2020). https://doi.org/10.1007/s11356-020-09526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09526-1

Keywords

Navigation