Skip to main content
Log in

Cadmium and iron removal from phosphoric acid using commercial resins for purification purpose

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Three commercial resins bearing sulfonic, amino phosphonic, or phosphonic/sulfonic reactive groups have been tested for the removal of iron and cadmium from phosphoric acid solutions. The sorption properties are compared for different experimental conditions such as sorbent dosage (0.5–2.5 g L−1), phosphoric acid concentration (from bi-component solutions, 0.25–2 M), and metal concentrations (i.e., in the range 0.27–2.7 mmol Cd L1 and 0.54 mmol Fe L−1) with a special attention paid to the impact of the type of reactive groups held on the resins. The sulfonic-based resin (MTC1600H) is more selective for Cd (against Fe), especially at high phosphoric acid concentration and low sorbent dosage, while MTS9500 (aminophosphonic resin) is more selective for Fe removal (regardless of acid concentration and sorbent dosage). Equilibrium is reached within 2–4 h. The resins can be ranked in terms of cumulative sorption capacities according the series: MTC1600H > MTS9570 > MTS 9500. Sulfuric acid (0.5–1 M) can be efficiently used for the desorption of both iron and cadmium for MTC1600H, while for MTS9570 (phosphonic/sulfonic resin) sulfuric acid correctly desorbs Cd (above 96% at 1 M concentration), contrary to Fe (less than 30%). The aminophosphonic resin shows much poorer efficiency in terms of desorption. The sulfonic resin (i.e., MTC1600H) shows much higher sorption capacity, better selectivity, comparable uptake kinetics (about 2 h equilibrium time), and better metal desorption ability (higher than 98% with 1 M acid concentration, regardless of the type of acid). This conclusion is confirmed by the comparison of removal properties in the treatment of different types of industrial phosphoric acid solutions (crude, and pre-treated H3PO4 solutions). The three resins are inefficient for the treatment of crude phosphoric acid, and activated charcoal pre-treatment (MTC1600H reduced cadmium content by 77%). However, MTC1600H allows removing over 93% of Fe and Cd for H3PO4 pre-treated by TBP solvent extraction, while the others show much lower efficiencies (< 53%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abasiyan SMA, Dashbolaghi F, Mahdavinia GR (2019) Chitosan cross-linked with kappa-carrageenan to remove cadmium from water and soil systems. Environ Sci Pollut Res 26:26254–26264

    Google Scholar 

  • Abdel-Ghafar HM, Abdel-Aal EA, Ibrahim MAM, El-Shall H, Ismail AK (2019) Purification of high iron wet-process phosphoric acid via oxalate precipitation method. Hydrometallurgy 184:1–8

    CAS  Google Scholar 

  • Ahmed H, Diamonta H, Chaker C, Abdelhamid R (2007) Purification of wet process phosphoric acid by solvent extraction with TBP and MIBK mixtures. Sep Purif Technol 55:212–216

    Google Scholar 

  • Ahmed IM, Ammanoeil RN, Saad EA, Daoud JA (2019) Purification of crude phosphoric acid and leached apatite by solvent extraction with CYANEX 923 in kerosene. Periodica Polytechnica-Chemical Engineering 63:122–129

    CAS  Google Scholar 

  • Alexandratos SD, Smith SD (2004) Intraligand cooperation in metal-ion binding by immobilized ligands: the effect of bifunctionality. J Appl Polym Sci 91:463–468

    CAS  Google Scholar 

  • Alexandratos SD, Zhu X (2015) The role of polarizability in determining metal ion affinities in polymer-supported reagents: monoprotic phosphates and the effect of hydrogen bonding. New J Chem 39:5366–5373

    CAS  Google Scholar 

  • Alexandratos SD, Zhu X (2016) Polymer-supported aminomethylphosphinate as a ligand with a high affinity for U (VI) from phosphoric acid solutions: combining variables to optimize ligand-ion communication. Solvent Extr Ion Exch 34:290–295

    CAS  Google Scholar 

  • Alexandratos SD, Zhu XP, Florent M, Sellin R (2016) Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Ind Eng Chem Res 55:4208–4216

    CAS  Google Scholar 

  • Alexandratos SD, Zhu X (2017): The effect of hydrogen bonding in enhancing the ionic affinities of immobilized monoprotic phosphate ligands. Materials 10

  • Barragan PP, Macedo MGM, Olguin MT (2017) Cadmium sorption by sodium and thiourea-modified zeolite-rich tuffs. J Environ Sci 52:39–48

    Google Scholar 

  • Buffle J, Zhang Z, Startchev K (2007) Metal flux and dynamic speciation at (bio)interfaces. Part 1: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ Sci Technol 41:7609–7620

    CAS  Google Scholar 

  • Chen M, Li J, Jin Y, Luo J, Zhu X, Yu D (2018) Efficient solvent extraction of phosphoric acid with dibutyl sulfoxide. J Chem Technol Biotechnol 93:467–475

    CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford, U.K., 414 pp

    Google Scholar 

  • EFMA (2000): Production of phosphoric acid. Best available techniques for pollution prevention and Controlin the European fertilizer industry, 4. European fertilizer Manufacturers' Association, Brussels, Belgium, 48 pp

  • El-Bayaa AA, Badawy NA, Gamal AM, Zidan IH, Mowafy AR (2011) Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand. J Hazard Mater 190:324–329

    CAS  Google Scholar 

  • El Zrelli R, Rabaoui L, Daghbouj N, Abda H, Castet S, Josse C, van Beek P, Souhaut M, Michel S, Bejaoui N, Courjault-Rade P (2018) Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ Sci Pollut Res 25:14690–14702

    Google Scholar 

  • Elmaadawy KHG, Ezz El Din M, Khalid AM, Abouzeid AZ (2015) Mineral industry in Egypt– part II non metallic commodities –phosphate rocks. J Min World Express 4:1–18

    Google Scholar 

  • Gomes HI, Jones A, Rogerson M, Burke IT, Mayes WM (2016) Vanadium removal and recovery from bauxite residue leachates by ion exchange. Environ Sci Pollut Res 23:23034–23042

    CAS  Google Scholar 

  • Guo J, Yan C, Luo Z, Fang H, Hu S, Cao Y (2019) Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium (II) and arsenic(V) adsorption. J Environ Sci 85:168–176

    Google Scholar 

  • Hamza W, Chtara C, Benzina M (2016) Purification of industrial phosphoric acid (54%) using Fe-pillared bentonite. Environ Sci Pollut Res 23:15820–15831

    CAS  Google Scholar 

  • Heres X, Blet V, Di Natale P, Ouaattou A, Mazouz H, Dhiba D, Cuer F (2018) Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals 8

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    CAS  Google Scholar 

  • Islam A, Zaidi N, Ahmad H, Kumar S (2015) Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater. Environ Sci Pollut Res 22:7716–7725

    CAS  Google Scholar 

  • Khayambashi A, Wang X, Wei Y (2016) Solid phase extraction of uranium (VI) from phosphoric acid medium using macroporous silica-based D2EHPA-TOPO impregnated polymeric adsorbent. Hydrometallurgy 164:90–96

    CAS  Google Scholar 

  • Kocjan R (1999) Retention of some metal ions and their separation on silica gel modified with Acid Red 88. Mikrochim Acta 131:153–158

    CAS  Google Scholar 

  • Kouzbour S, Gourich B, Gros F, Vial C, Allam F, Stiriba Y (2019) Comparative analysis of industrial processes for cadmium removal from phosphoric acid: a review. Hydrometallurgy 188:222–247

    CAS  Google Scholar 

  • Kushwaha S, Sreedhar B, Padmaja P (2010) Sorption of phenyl mercury, methyl mercury, and inorganic mercury onto chitosan and barbital immobilized chitosan: spectroscopic, potentiometric, kinetic, equilibrium, and selective desorption studies. J Chem Eng Data 55:4691–4698

    CAS  Google Scholar 

  • Kussainova MZ, Pasa S, Zhumasilovich DU, Chernyakova RM, Atlan M, Temel H (2016) Comparative sorption capacity of Pb (II) and Cd (II) by natural zeolite in phosphoric acid medium. Desalin Water Treat 57:12561–12571

    CAS  Google Scholar 

  • Kussainova MZ, Chernyakova RM, Jussipbekov UZ, Pasa S (2019) Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid. J Mol Struct 1184:49–58

    CAS  Google Scholar 

  • Lan T, Li PF, Rehman FU, Li XL, Yang W, Guo SW (2019) Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers. Environ Sci Pollut Res 26:33555–33567

    CAS  Google Scholar 

  • Lembrikov VM, Konyakhina LV, Volkova VV, Lobova MV, Pokidova OV (2004) Interaction of tri-n-butyl phosphate, water, and phosphoric acid in purification of wet-process phosphoric acid. Russ J Appl Chem 77:1606–1608

    CAS  Google Scholar 

  • Li K, Li M, Xue D (2012) Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution. J Phys Chem A 116:4192–4198

    CAS  Google Scholar 

  • Li X, Li J, Jin Y, Chen M, Feng D, Guo Y (2017a) Wet process of phosphoric acid purification by solvent extraction using tri-n-butyl phosphate and cyclohexanol mixtures. J Serb Chem Soc 82:579–592

    CAS  Google Scholar 

  • Li X, Li J, Luo J, Jin Y, Zou D (2017b) Purification of wet process phosphoric acid by solvent extraction using cyclohexanol. Solvent Extr Res Dev - Jpn 24:23–35

    CAS  Google Scholar 

  • Liu C, Cao J, Shen W, Ren Y, Mu W, Ding X (2016) Liquid - liquid equilibria of quaternary system phosphoric acid/sulfuric acid/water/tri-n-butyl phosphate and the formation of extraction complex at 303.2 K. Fluid Phase Equilib 408:190–195

    CAS  Google Scholar 

  • Marczenko Z, Balcerzak M (2000) Chapter 37 - phosphorus. In: Balcerzak M (ed) Marczenko Z. Elsevier, Analytical Spectroscopy Library, pp 326–333

    Google Scholar 

  • Montembault V, Soutif JC, Brosse JC, Grote M (1999) Synthesis and complexing properties of resins containing aminocarboxylic acid as functional groups from diethylenetriaminepentaacetic acid bisanhydride and polyvinyl alcohols. React Funct Polym 39:253–261

    CAS  Google Scholar 

  • Nasr B, Hedi B, Abdellatif G, Rodrigo MA (2005) Purification of wet-process phosphoric acid by hydrogen peroxide oxidation, activated carbon adsorption and electrooxidation. Chem Eng Technol 28:193–198

    CAS  Google Scholar 

  • NMA (2010) Economic evaluation of U and REEs in Egyptian phosphorite ores. NMA, Cairo

    Google Scholar 

  • NMA (2017) Uranium extraction from dihydrate phosphoric acid. Nuclear Materials Authority, Cairo

    Google Scholar 

  • NMA (2018) Purification of wet process phosphoric acid using solvent extraction technique. Nuclear Materials Authority, Cairo

    Google Scholar 

  • Pearson RG (1966): Acids and bases. Science (New York, N.Y.) 151, 172-7

  • Persson I (2010) Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 82:1901–1917

    CAS  Google Scholar 

  • Prelot B, Ayed I, Marchandeau F, Zajac J (2014) On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution. Environ Sci Pollut Res 21:9334–9343

    CAS  Google Scholar 

  • Reddy BR, Kumar JR (2016) Rare earths extraction, separation, and recovery from phosphoric acid media. Solvent Extr. Ion Exch. 34:226–240

    CAS  Google Scholar 

  • Reyes LH, Medina IS, Mendoza RN, Vazquez JR, Rodriguez MA, Guibal E (2001) Extraction of cadmium from phosphoric acid using resins impregnated with organophosphorus extractants. Ind Eng Chem Res 40:1422–1433

    Google Scholar 

  • Rivas BL, Pooley SA, Aceiton E (2002) Metal ion adsorption behavior of poly 3-(dimethylamine) propyl acrylate and poly 3-(dimethylamine) propylacrylate-co-acrylic acid resins. J Appl Polym Sci 84:1251–1256

    CAS  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    CAS  Google Scholar 

  • Sanghani R (2014): Novel technique for purification of fertilizer phosphoric acid with simultaneous uranium extraction. In: Amalhay M (Editor), Symphos 2013 - 2nd International Symposium on Innovation and Technology in the Phosphate Industry. Procedia Engineering, pp. 225-232

  • Shweikani R, Kousa M, Mizban F (2013) The use of phosphogypsum in Syrian cement industry: radiation dose to public. Ann Nucl Eng 54:197–201

    CAS  Google Scholar 

  • Spies ARL, Wewers F (2020) Equilibrium, kinetics and thermodynamics studies of Cd sorption onto a dithizone-impregnated Amberchrom CG-300m polymer resin. Arab J Chem 13:5050–5059

    CAS  Google Scholar 

  • Tang Y, Liang S, Wang J, Yu S, Wang Y (2013) Amino-functionalized core-shell magnetic mesoporous composite microspheres for Pb (II) and Cd (II) removal. J Environ Sci 25:830–837

    CAS  Google Scholar 

  • Tjioe TT, Weij P, Wesselingh JA, Rosmalen GMV (1988) Removal of cadmium anion exchange in a wet phosphoric acid process. Part 2: equilibria, kinetics and regeneration. Solvent Extr. Ion Exch 6:505–560

    CAS  Google Scholar 

  • Trabelsi W, Tlili A (2017) Phosphoric acid purification through different raw and activated clay materials (southern Tunisia). J Afr Earth Sci 129:647–658

    CAS  Google Scholar 

  • Ulrich AE (2019) Cadmium governance in Europe's phosphate fertilizers: not so fast? Sci Total Environ 650:541–545

    CAS  Google Scholar 

  • Virolainen S, Repo E, Sainio T (2019) Recovering rare earth elements from phosphogypsum using a resin-in-leach process: selection of resin, leaching agent, and eluent. Hydrometallurgy 189:105125

    CAS  Google Scholar 

  • Wang ZH, Shen F, Shen DK, Jiang YH, Xiao R (2017) Immobilization of Cu2+ and Cd2+ by earthworm manure derived biochar in acidic circumstance. J Environ Sci 53:293–300

    Google Scholar 

  • Wieszczycka K, Filipowiak K, Wojciechowska I, Aksamitowski P (2020) Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions. Sep Purif Technol 236:10

    Google Scholar 

  • Yassien ZJ, Elameer ZAM (2014) Profit maximization for Sibaiya east open-pit phosphate mines by using spreadsheet software packages. Al-Azhar Univ Eng J 9:1–10

    Google Scholar 

  • Ye C, Li J (2013) Wet process phosphoric acid purification by solvent extraction using N-octanol and tributylphosphate mixtures. J Chem Technol Biotechnol 88:1715–1720

    CAS  Google Scholar 

  • Yin GC, Bi LL, Song XW, Luo HY, Ji PP, Lin QT, Liu QJ, Tang GY (2019) Adsorption of Cd (II) from aqueous solution by Pennisetum sp. straw biochars derived from different modification methods. Environ Sci Pollut Res 26:7024–7032

    CAS  Google Scholar 

  • Zhu X, Alexandratos SD (2011) Effect of hydrogen-bonding in the development of high-affinity metal ion complexants: polymer-bound phosphorylated cyclodextrin. J Appl Polym Sci 121:1137–1142

    CAS  Google Scholar 

  • Zhu X, Alexandratos SD (2015) Development of a new ion-exchange/coordinating phosphate ligand for the sorption of U (VI) and trivalent ions from phosphoric acid solutions. Chem Eng Sci 127:126–132

    CAS  Google Scholar 

  • Zuo Y, Chen Q, Li C, Kang C, Lei X (2019) Removal of fluorine from wet-process phosphoric acid using a solvent extraction technique with tributyl phosphate and silicon oil. ACS Omega 4:11593–11601

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank IFE (Institut Français d’Egypte, France), Ministère des Affaires Etrangères, Ministère de l’Enseignement Supérieur et de la Recherche (France) and STDF (Science and Technology Development Fund, Egypt) for supporting the bi-lateral collaboration between NMA and IMT-Mines Ales and the funding of post-doctoral fellowship of Dr. Ahmed Masoud (at IMT-Mines Ales). IAEA (Internal Atomic Energy Association) for funding the visit of Dr. Taha Montaser to IMT – Mines Ales (Fellowship No. FS-EGY2013-1702837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guibal.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M.H., Masoud, A.M., Khawassek, Y.M. et al. Cadmium and iron removal from phosphoric acid using commercial resins for purification purpose. Environ Sci Pollut Res 27, 31278–31288 (2020). https://doi.org/10.1007/s11356-020-09342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09342-7

Keywords

Navigation