Skip to main content
Log in

Sustainability in the dairy industry: a systematic literature review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The dairy industry can contribute to global food security in a sustainable way by efficiently converting milk into dairy ingredients and products, even though they are polluting on a large scale. In this context, this study aimed to conduct a systematic literature review on sustainable indicators and dairy industries. The methodology used has a qualitative and quantitative approach and its technical procedure was the systematic literature review. The bases of journals consulted, using the keywords “sustainability indicator” and “dairy industry” which resulted in 130 valid scientific articles. The main results show that the sustainability indicators in the dairy industry are emerging and lacking research; being found seven papers, that highlight 12 indicators of the environmental, 11 of the social and eight economic dimensions, that may be considered fragile and initial. The studied problems are related to wastewater treatment methods, electric power consumption, efficiency of the industrial plant, among others, and the benefits on the theme are related to solutions to the difficulties, such as electricity reduction, sustainable practices. Among others, it is concluded that the dairy industries address the sustainability theme since 2011, with an ambiguous trend, being found evidence of the fragility of the sustainability indicators was found, mainly in the initial stage of their conception, when considering holistic approach (triple bottom line).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguirre-Villegas HA, Milani FX, Kraatz S, Reinemann DJ (2012) Life cycle impact assessment and allocation methods development for cheese and whey processing. A Soc Agricul Biol Eng. https://doi.org/10.13031/2013.41363

  • Akoum O, Jaffrin MY, Ding LH, Frappart M (2004) Treatment of dairy process waters using a vibrating filtration system and NF and RO membranes. J Membr Sci 235:111–122

    CAS  Google Scholar 

  • Alkhatim HS, Alcaina MI, Soriano E, Iborra MI, Lora J, Arnal J (1998) Poster: treatment of whey effluents from dairy industries by nanofiltration membranes. Desalination 119(1–3):177–183

    CAS  Google Scholar 

  • Arbeli Z, Brenner A, Abeliovich A (2006) Treatment of high-strength dairy wastewater in an anaerobic deep reservoir: analysis of the methanogenic fermentation pathway and the rate-limiting step. Water Res 40(19):3653–3659

    CAS  Google Scholar 

  • Audic JL, Chaufer B, Daufin G (2003) Non-food applications of milk components and dairy co-products: a review. Lait 83(6):417–438

    CAS  Google Scholar 

  • Augustin MA, Udabage P, Juliano P, Clarke PT (2013) Towards a more sustainable dairy industry: integration across the farm–factory interface and the dairy factory of the future. Int Dairy J 31(1):2–11

    Google Scholar 

  • Aydiner C, Sen U, Topcu S, Ekinci D, Altinay AD, Koseoglu-Imer DY, Keskinler B (2014) Techno-economic viability of innovative membrane systems in water and mass recovery from dairy wastewater. J Membr Sci 458:66–75

    CAS  Google Scholar 

  • Aydiner C, Sen U, Koseoglu-Imer DY, Dogan EC (2016) Hierarchical prioritization of innovative treatment systems for sustainable dairy wastewater management. J Clean Prod 112:4605–4617

    CAS  Google Scholar 

  • Bai X, Ren X, Khanna NZ, Zhou N, Hu M (2018) Comprehensive water footprint assessment of the dairy industry chain based on ISO 14046: a case study in China. Resour Conserv Recycl 132:369–375

    Google Scholar 

  • Balannec B, Gésan-Guiziou G, Chaufer B, Rabiller-Baudry M, Daufin G (2002) Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration. Desalination 147(1–3):89–94

    CAS  Google Scholar 

  • Balannec B, Vourch M, Rabiller-Baudry M, Chaufer B (2005) Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep Purif Technol 42(2):195–200

    CAS  Google Scholar 

  • Barać Ž, Muminović S (2013) The impact of capital investments on dairy processing industry features: evidence from Slovenia, Croatia and Serbia. Mljekarstvo 63(3):140–149

    Google Scholar 

  • Baran J (2013) Efficiency of the production scale of polish dairy companies based on data envelopment analysis. Oeconomia 12(2):5–13

    Google Scholar 

  • Barford JP, Cail RG, Callander IJ, Floyd EJ (1986) Anaerobic digestion of high-strength cheese whey utilizing semicontinuous digesters and chemical flocculant addition. Biotechnol Bioeng 28(11):1601–1607

    CAS  Google Scholar 

  • Barnes AP (2006) Does multi-functionality affect technical efficiency? A non-parametric analysis of the Scottish dairy industry. J Environ Manag 80:287–294

    CAS  Google Scholar 

  • Barry JA (1982) Alcohol production from cheese whey. Dairy Indu Int 47(10):19–22

    Google Scholar 

  • Baskaran K, Palmowski LM, Watson BM (2003) Wastewater reuse and treatment options for the dairy industry. Water Sci Technol Water Supply 3(3):85–91

    CAS  Google Scholar 

  • Berlin J (2002) Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int Dairy J 12(11):939–953

    Google Scholar 

  • Berlin J, Sonesson U, Tillman AM (2007) A life cycle based method to minimise environmental impact of dairy production through product sequencing. J Clean Prod 15(4):347–356

    Google Scholar 

  • Bhadouria BS, Sai VS (2011) Utilization and treatment of dairy effluent through biogas generation-a case study. Int J Environ Sci 1(7):1621

  • Blanc P, Goma G (1989) Propionic acid and biomass production using continuous ultrafiltration fermentation of whey. Biotechnol Lett 11(3):189–194

    CAS  Google Scholar 

  • Blaskó B (2011) An analysis of the Hungarian dairy industry in the light of sustainability. Region Bus Stud 3(1):699–711

    Google Scholar 

  • Blok V, Long TB, Gaziulusoy AI, Ciliz N, Lozano R, Huisingh D, Boks C (2015) From best practices to bridges for a more sustainable future: Advances and challenges in the transition to global sustainable production and consumption: Introduction to the ERSCP stream of the special volume. J Clean Prod 108:19–30

  • Boening PH, Larsen VF (1982) Anaerobic fluidized bed whey treatment. Biotechnol Bioeng 14:2539–2556

    Google Scholar 

  • Boiral O, Guillaumie L, Heras-Saizarbitoria I, Tayo Tene CV (2018) Adoption and outcomes of ISO 14001: A systematic review. Int J Manag Rev 20(2):411–432

  • Bosco F, Chiampo F (2010) Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: production of bioplastics using dairy residues. J Biosci Bioeng 109(4):418–421

    CAS  Google Scholar 

  • Boulton AC, Rushton J, Wathes CM, Wathes DC (2011) Past trends and future challenges for a sustainable UK dairy industry. R Agric Soc England J 172:1–7

    Google Scholar 

  • Bourlakis M, Maglaras G, Gallear D, Fotopoulos C (2014) Examining sustainability performance in the supply chain: the case of the Greek dairy sector. Ind Mark Manag 43(1):56–66

    Google Scholar 

  • Brião VB, Granhen Tavares CR (2007) Effluent generation by the dairy industry: preventive attitudes and opportunities. Braz J Chem Eng 24(4):487–497

  • Brião VB, Salla ACV, Miorando T, Hemkemeier M, Favaretto DPC (2019) Water recovery from dairy rinse water by reverse osmosis: giving value to water and milk solids. Resour Conserv Recycl 140:313–323

    Google Scholar 

  • Burgaud JL (1969) Les eaux résiduaires dans l'industrie laitière. Lait 49(487):417–433

    CAS  Google Scholar 

  • Buys L, Mengersen K, Johnson S, van Buuren N, Chauvin A (2014) Creating a sustainability scorecard as a predictive tool for measuring the complex social, economic and environmental impacts of industries, a case study: assessing the viability and sustainability of the dairy industry. J Environ Manag 133:184–192

    CAS  Google Scholar 

  • Carvalho A, Matos HA, Gani R (2013) SustainPro - A tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Comput Chem Eng 50:8–27

  • Challis C, Tierney M, Todd A, Wilson E (2017) Human factors in dairy industry process control for energy reduction. J Clean Prod 168:1319–1334

    Google Scholar 

  • Champagne CP, Goulet J, Lachance RA (1990) Production of bakers' yeast in cheese whey ultrafiltrate. Appl Environ Microbiol 56(2):425–430

    CAS  Google Scholar 

  • Chmiel H, Mavrov V, Belieres E (2000) Reuse of vapour condensate from milk processing using nanofiltration. Filtration & separation 37(3):24–27

    CAS  Google Scholar 

  • Cocci AA, Burke BF, Landine RC, Blickenstaff DL (1991) Anaerobic-aerobic pretreatment of a dairy waste; a case history. Dairy Food Environ Sanitation 11(9):505–509

    Google Scholar 

  • Cox GC, Miller EJ (1986) Comparative energy efficiencies of the dairy manufacturing and processing industry: Australia and New Zealand. Engineering costs and production economics 10(4):293–303

    Google Scholar 

  • Daneshi A, Esmaili-Sari A, Daneshi M, Baumann H (2014) Greenhouse gas emissions of packaged fluid milk production in Tehran. J Clean Prod 80:150–158

    CAS  Google Scholar 

  • Daufin G, Escudier JP, Carrere H, Berot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 79(2):89–102

    CAS  Google Scholar 

  • Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40(8):2583–2595

    CAS  Google Scholar 

  • Djekic I, Smigic N, Glavan R, Miocinovic J, Tomasevic I (2018) Transportation sustainability index in dairy industry–fuzzy logic approach. J Clean Prod 180:107–115

    Google Scholar 

  • Drescher K, Maurer O (1999) Competitiveness in the European dairy industries. Agribusiness: An International Journal 15(2):163–177

    Google Scholar 

  • Eide MH (2002) Life cycle assessment (LCA) of industrial milk production. Int J Life Cycle Assess 7(2):115–126

    CAS  Google Scholar 

  • Eide MH, Homleid JP, Mattsson B (2003) Life cycle assessment (LCA) of cleaning-in-place processes in dairies. LWT-Food Sci Technol 36(3):303–314

    CAS  Google Scholar 

  • Fantin V, Buttol P, Pergreffi R, Masoni P (2012) Life cycle assessment of Italian high quality milk production. A comparison with an EPD study. J Clean Prod 28:150–159

    CAS  Google Scholar 

  • Farizoglu B, Uzuner S (2011) The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem Eng J 57:46–54

    CAS  Google Scholar 

  • Farizoglu B, Keskinler B, Yildiz E, Nuhoglu A (2004) Cheese whey treatment performance of an aerobic jet loop membrane bioreactor. Process Biochem 39(12):2283–2291

    CAS  Google Scholar 

  • Feitz AJ, Lundie S, Dennien G, Morain M, Jones M (2007) Generation of an industry-specific physico-chemical allocation matrix. Application in the dairy industry and implications for systems analysis (9 pp). Int J Life Cycle Assess 12(2):109–117

    CAS  Google Scholar 

  • Flysjö A, Thrane M, Hermansen JE (2014) Method to assess the carbon footprint at product level in the dairy industry. Int Dairy J 34(1):86–92

    Google Scholar 

  • Frigon JC, Breton J, Bruneau T, Moletta R, Guiot SR (2009) The treatment of cheese whey wastewater by sequential anaerobic and aerobic steps in a single digester at pilot scale. Bioresour Technol 100(18):4156–4163

    CAS  Google Scholar 

  • Gast J, Gundolf K, Cesinger B (2017) Doing business in a green way: a systematic review of the ecological sustainability entrepreneurship literature and future research directions. J Clean Prod 147:44–56

    Google Scholar 

  • Gavala HN, Kopsinis H, Skiadas IV, Stamatelatou K, Lyberatos G (1999) Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. J Agric Eng Res 73(1):59–63

    Google Scholar 

  • Genç S, Yıldırım N (2017) Sustainable dairy industry by using renewable energy source. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13(3):665–670

    Google Scholar 

  • Glover JL, Champion D, Daniels KJ, Dainty AJD (2014) An institutional theory perspective on sustainable practices across the dairy supply chain. Int J Prod Econ 152:102–111

    Google Scholar 

  • Gonçalves NP, Maderi TR, Santos PF (2017) Avaliação das práticas ambientais em indústrias de laticínios–estudo de caso. Periódico Eletrônico Fórum Ambiental da Alta Paulista 13(2):66–77

    Google Scholar 

  • González Siso MI (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(1):1–11

    Google Scholar 

  • González-García S, Castanheira ÉG, Dias AC, Arroja L (2013a) Using life cycle assessment methodology to assess UHT milk production in Portugal. Sci Total Environ 442:225–234

    Google Scholar 

  • González-García S, Castanheira ÉG, Dias AC, Arroja L (2013b) Environmental life cycle assessment of a dairy product: the yoghurt. Int J Life Cycle Assess 18(4):796–811

    Google Scholar 

  • Grochowska R, Szczepaniak I (2019) Sustainability business models in milk processing. Considerations based on the polish experience. J Agribus Rural Dev 52(2):111–122

    Google Scholar 

  • Haast J, Britz TJ, Novello JC, Verwey EW (1985) Anaerobic digestion of deproteinated cheese whey. J Dairy Res 52:457–467

    Google Scholar 

  • Houldsworth DW (1980) Demineralization of whey by means of ion exchange and electrodialysis. Int J Dairy Technol 33(2):45–51

    CAS  Google Scholar 

  • Huang J, Xu CC, Ridoutt BG, Liu JJ, Zhang HL, Chen F, Li Y (2014) Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China. J Clean Prod 79:91–97

    Google Scholar 

  • Hwang DC, Damodaran S (1995) Selective precipitation and removal of lipids from cheese whey using chitosan. J Agric Food Chem 43(1):33–37

    CAS  Google Scholar 

  • IDF International Dairy Federation. (2018). Bulletin of the IDF N° 494/ 2018: The World Dairy Situation. https://store.fil-idf.org/wp-content/uploads/2018/10/WDS2018Preview-1.pdf. Accessed 05 may 2019

  • Irfan ZB, Mondal M (2016) Water footprint analysis in dairy industry in India. Int J Environ Sci Dev 7(8):591–594

    Google Scholar 

  • Jalali S, Wohlin C (2012) Systematic literature studies: database searches vs. backward snowballing In Proceedings of the ACM-IEEE international symposium on Empirical software engineering and measurement. ESEM 12:29–38

    Google Scholar 

  • Jokandan MJ, Aghbashlo M, Mohtasebi SS (2015) Comprehensive exergy analysis of an industrial-scale yogurt production plant. Energy 93:1832–1851

    Google Scholar 

  • Kalyuzhnyi SV, Martinez EP, Martinez JR (1997) Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Bioresour Technol 60(1):59–65

    CAS  Google Scholar 

  • Kasmi M (2018) Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste Biomass Valorization 9(2):195–209

    CAS  Google Scholar 

  • Kim D, Thoma G, Nutter D, Milani F, Ulrich R, Norris G (2013) Life cycle assessment of cheese and whey production in the USA. Int J Life Cycle Assess 18(5):1019–1035

    CAS  Google Scholar 

  • Kosikowski FV (1979) Whey utilization and whey products. J Dairy Sci 62:1149–1160

    CAS  Google Scholar 

  • Kothari R, Kumar V, Pathak VV, Tyagi VV (2017) Sequential hydrogen and methane production with simultaneous treatment of dairy industry wastewater: bioenergy profit approach. Int J Hydrog Energy 42(8):4870–4879

    CAS  Google Scholar 

  • Koyuncu I, Turan M, Topacik D, Ates A (2000) Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents. Water Sci Technol 41(1):213–221

    CAS  Google Scholar 

  • Labbé JI, Ramos-Suárez JL, Hernández-Pérez A, Baeza A, Hansen F (2017) Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. J Environ Chem Eng 5(1):635–643

    Google Scholar 

  • Lhanafi S, Anfar Z, El Alem NE, Chebli B, Benafqir M (2020) Methanisation: a promising green technology to manage organic wastes in the Moroccan dairy industry. Mater Today: Proceedings 22:57–60

    CAS  Google Scholar 

  • Li Y, Mathiyazhagan K (2018) Application of DEMATEL approach to identify the influential indicators towards sustainable supply chain adoption in the auto components manufacturing sector. J Clean Prod 172:2931–2941

  • Lima LP, Ribeiro GB, Perez R (2018) The energy mix and energy efficiency analysis for Brazilian dairy industry. J Clean Prod 181:209–216

    Google Scholar 

  • Loubère L, Ratinaud P (2013). Documentation IRaMuTeQ 0.6 alpha 3 version 0.1. 2013. http://www.iramuteq.org/documentation/fichiers/documentation_iramuteq_21_12_2013.pdf. Accessed 01 may 2019

  • Luo J, Ding L, Qi B, Jaffrin MY, Wan Y (2011) A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresour Technol 102(16):7437–7442

    CAS  Google Scholar 

  • Luthra S, Govindan K, Kannan D, Mangla SK, Garg CP (2017) An integrated framework for sustainable supplier selection and evaluation in supply chains. J Clean Prod 140:1686–1698

  • Malaspina F, Stante L, Cellamare CM, Tilche A (1995) Cheese whey and cheese factory wastewater treatment with a biological anaerobic - aerobic process. Water Sci Technol 32(12):59–72

    CAS  Google Scholar 

  • Malaspina F, Cellamare CM, Stante L, Tilche A (1996) Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor. Bioresour Technol 55(2):131–139

    CAS  Google Scholar 

  • Méndez R, Blazquez R, Lorenzo F, Lema JM (1989) Anaerobic treatment of cheese whey: start-up and operation. Water Sci Technol 21(12):1857–1860

    Google Scholar 

  • Meneses YE, Flores RA (2016) Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: a case study on water conservation for the dairy industry. J Dairy Sci 99(5):3396–3407

    CAS  Google Scholar 

  • Miller EJ (1984) Energy use in the New Zealand dairy processing industry. Energy in agriculture 3:307–312

    Google Scholar 

  • Mockaitis G, Ratusznei SM, Rodrigues JA, Zaiat M, Foresti E (2006) Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. J Environ Manag 79(2):198–206

    CAS  Google Scholar 

  • Monroy O, Vazquez F, Derramadero JC, Guyot JP (1995) Anaerobic-aerobic treatment of cheese wastewater with national technology in Mexico: the case of “El Sauz”. Water Sci Technol 32(12):149–156

    Google Scholar 

  • Muangrat R, Onwudili JA, Williams PT (2011) Alkaline subcritical water gasification of dairy industry waste (whey). Bioresour Technol 102(10):6331–6335

    CAS  Google Scholar 

  • Muehlhoff E, Bennett A, McMahon D (2013) Milk and dairy products in human nutrition. Food and Agriculture Organization of the United Nations (FAO), Rome

  • Mukhopadhyay R, Talukdar D, Chatterjee BP, Guha AK (2003) Whey processing with chitosan and isolation of lactose. Process Biochem 39(3):381–385

    CAS  Google Scholar 

  • Munir MT, Yu W, Young BR (2014) Can exergy be a useful tool for the dairy industry? Comp Aided Chem Eng 33:1129–1134

    Google Scholar 

  • Nanda S, Reddy SN, Hunter HN, Butler IS, Kozinski JA (2015) Supercritical water gasification of lactose as a model compound for valorization of dairy industry effluents. Ind Eng Chem Res 54(38):9296–9306

    CAS  Google Scholar 

  • Nguyen MH, Durham RJ (2004) Status and prospects for cleaner production in the dairy food industry. Aust J Dairy Technol 59(2):171

    Google Scholar 

  • Nisa, S. (2017). Sustainable business model in dairy sector. Int J Manag Res, 5(5)

  • OECD/FAO (2018) OECD-FAO Agricultural Outlook 2018–2027, OECD Publishing. Paris/Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.1787/agr_outlook-2018-en Accessed 17 may 2019

    Book  Google Scholar 

  • Orhon D, Görgün E, Germirli F, Artan N (1993) Biological treatability of dairy wastewaters. Water Res 27(4):625–633

    CAS  Google Scholar 

  • Özbay A, Demirer GN (2007) Cleaner production opportunity assessment for a milk processing facility. J Environ Manag 84(4):484–493

    Google Scholar 

  • Öztürk I, Eroglu V, Ubay G, Demir I (1993) Hybrid upflow anaerobic sludge blanket reactor (HUASBR) treatment of dairy effluents. Water Sci Technol 28(2):77–85

    Google Scholar 

  • Papoutsopoulou SV, Ekateriniadou LV, Kyriakidis DA (1994) Genetic construction of Xanthomonas campestris and xanthan gum production from whey. Biotechnol Lett 16(12):1235–1240

    CAS  Google Scholar 

  • Pappa I, Illiopoulos C, Massouras T (2019) On sustainability of a dairy sector in crisis. Int J Food Syst Dyn 10(2):130–150

    Google Scholar 

  • Passeggi M, López I, Borzacconi L (2012) Modified UASB reactor for dairy industry wastewater: performance indicators and comparison with the traditional approach. J Clean Prod 26:90–94

    CAS  Google Scholar 

  • Place SE, Mitloehner FM (2010) Invited review: contemporary environmental issues: a review of the dairy industry's role in climate change and air quality and the potential of mitigation through improved production efficiency. J Dairy Sci 93(8):3407–3416

    CAS  Google Scholar 

  • Popović R, Panić D (2018) Technical efficiency of Serbian dairy processing industry. Econ Agric 65(2):569–581

    Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    CAS  Google Scholar 

  • Quijera JA, Labidi J (2013) Pinch and exergy based thermosolar integration in a dairy process. Appl Therm Eng 50(1):464–474

    Google Scholar 

  • Quijera JA, Alriols MG, Labidi J (2011) Integration of a solar thermal system in a dairy process. Renew Energy 36(6):1843–1853

    Google Scholar 

  • Rad SJ, Lewis MJ (2014) Water utilisation, energy utilisation and waste water management in the dairy industry: a review. Int J Dairy Technol 67(1):1–20

    CAS  Google Scholar 

  • Radha K, Thomas A, Sathian CT (2014) Application of nano technology in dairy industry: prospects and challenges-a review. Indian J Dairy Sci 67(5):367–374

    Google Scholar 

  • Rafiee S, Khoshnevisan B, Mohammadi I, Aghbashlo M, Clark S (2016) Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: an Iranian case study. Sci Total Environ 562:614–627

    CAS  Google Scholar 

  • Ramirez CA, Patel M, Blok K (2006) From fluid milk to milk powder: energy use and energy efficiency in the European dairy industry. Energy 31(12):1984–2004

    Google Scholar 

  • Rao M, Bhole AG (2002) Removal of organic matter from dairy industry wastewater using low-cost adsorbents. Indian Chemical Engineer 44(1):25–28

    CAS  Google Scholar 

  • Riera FA, Suárez A, Muro C (2013) Nanofiltration of UHT flash cooler condensates from a dairy factory: characterisation and water reuse potential. Desalination 309:52–63

    CAS  Google Scholar 

  • Salzman S, Scarborough H, Allinson G (2017) Exploring the economic viability of using constructed wetlands to manage waste-water in the dairy industry. Austr J Environ Manag 24(3):276–288

    Google Scholar 

  • Sampaio RE, Mancini MC (2007) Estudos de revisão sistemática: um guia para a síntese criteriosa da evidência científica. Rev Bras Fis 11(1):83–89

    Google Scholar 

  • Santos HCM, Maranduba HL, Almeida Neto JA, Rodrigues LB (2017) Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil. Environ Sci Pollut Res 24(4):3470–3482

    CAS  Google Scholar 

  • Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries-possibility of reuse. Desalination 195(1–3):141–152

    CAS  Google Scholar 

  • Satolo EG, Campos RSD, Ussuna GDA, Simon AT, Mac-Lean PAB, Braga Júnior SS (2020) Sustainability assessment of logistics activities in a dairy: an example of an emerging economy. Production 30

  • Schütz, R. E. (2018). O Inglês como idioma internacional. Inglês Made in Brazil. http://www.sk.com.br/sk-ingl.html. Accessed 05 may 2019

  • Severino AJ (2007) Metodologia do Trabalho Científico, 23rd edn. Cortez, São Paulo

    Google Scholar 

  • Sharma VK, Chandana P, Bhardwaj A (2015) Critical factors analysis and its ranking for implementation of GSCM in Indian dairy industry. J Manuf Technol Manag 26(6):911–922

    Google Scholar 

  • Sharma VK, Chandna P, Bhardwaj A (2017) Green supply chain management related performance indicators in agro industry: a review. J Clean Prod 141(1):1194–1208

  • Sharma AK, Sharma C, Mullick SC, Kandpal TC (2018) Financial viability of solar industrial process heating and cost of carbon mitigation: a case of dairy industry in India. Sustain Energy Technol Assess 27:1–8

    CAS  Google Scholar 

  • Shay LK, Wegner GH (1986) Nonpolluting conversion of whey permeate to food yeast protein. J Dairy Sci 69(3):676–683

    CAS  Google Scholar 

  • Singh G, Tyagi VV, Singh PJ, Pandey AK (2020) Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: an energetic and exergetic approach. Energy 194:116799

    Google Scholar 

  • Soboh R, Lansink A, Dijk G (2014) Efficiency of European dairy processing firms. Wageningen J Live Sci 70-71:53–59

    Google Scholar 

  • Sorgüven E, Özilgen M (2012) Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process. Energy 40(1):214–225

    Google Scholar 

  • Soufiyan MM, Aghbashlo M, Mobli H (2017) Exergetic performance assessment of a long-life milk processing plant: a comprehensive survey. J Clean Prod 140:590–607

    Google Scholar 

  • Switzenbaum MS, Danskin SC (1982) Anaerobic expanded bed treatment of whey. Agricultural Wastes 4(6):411–426

    CAS  Google Scholar 

  • Thoma G, Popp J, Nutter D, Shonnard D, Ulrich R, Matlock M, Adom F (2013) Greenhouse gas emissions from milk production and consumption in the United States: a cradle-to-grave life cycle assessment circa 2008. Int Dairy J 31:S3–S14

    CAS  Google Scholar 

  • Thongplew N, van Koppen CK, Spaargaren G (2016) Transformation of the dairy industry toward sustainability: the case of the organic dairy industries in the Netherlands and Thailand. Environ Dev 17:6–20

  • Tiwari S, Behera CR, Srinivasan B (2016) Simulation and experimental studies to enhance water reuse and reclamation in India’s largest dairy industry. J Environ Chem Eng 4(1):605–616

    CAS  Google Scholar 

  • Tonelli F, Evans S, Taticchi P (2013) Industrial sustainability: challenges, perspectives, actions. Int J Bus Innov Res 7(2):143c163

  • Torres López ER, Doval Leira R, Galera MM, Bello Bugallo PM (2017) Integrated environmental permit through best available techniques: evaluation of the dairy industry. J Clean Prod 162:512–528

  • Üçtuğ FG (2019) The environmental life cycle assessment of dairy products. Food Eng Rev:1–18

  • Van den Berg L, Kennedy KJ (1983) Dairy waste treatment with anaerobic stationary fixed film reactors. Water Sci Technol 15(8–9):359–368

  • Van der Horst HC, Timmer JMK, Robbertsen T, Leenders J (1995) Use of nanofiltration for concentration and demineralization in the dairy industry: model for mass transport. J Membr Sci 104(3):205–218

    Google Scholar 

  • Veleva V, Ellenbecker M (2001) Indicators of sustainable production: framework and methodology. J Clean Prod 9(6):519–549

    Google Scholar 

  • Venkatraman K, Achi M (2004) To eliminate the disposal of salty whey from a dairy industry into the sewer in an environmental, social and economical way–a case study from dairy farmers, Toowoomba, Queensland, Australia. Int J Environ Technol Manag 4(4):365–374

    CAS  Google Scholar 

  • Vlontzos G, Theodoridis A (2013) Efficiency and productivity change in the Greek dairy industry. Agric Econ Rev 14(389-2016-23494):14–28

    Google Scholar 

  • Von Keyserlingk MAG, Martin NP, Kebreab E, Knowlton KF, Grant RJ, Stephenson M, Smith SI (2013) Invited review: sustainability of the US dairy industry. J Dairy Sci 96(9):5405–5425

    Google Scholar 

  • Vourch M, Balannec B, Chaufer B, Dorange G (2005) Nanofiltration and reverse osmosis of model process waters from the dairy industry to produce water for reuse. Desalination 172(3):245–256

    CAS  Google Scholar 

  • Vourch M, Balannec B, Chaufer B, Dorange G (2008a) Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 219(1–3):190–202

    CAS  Google Scholar 

  • Vourch M, Balannec B, Chaufer B, Dorange G (2008b) Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 219(1–3):190–202

    CAS  Google Scholar 

  • Xu T, Flapper J, Kramer KJ (2009) Characterization of energy use and performance of global cheese processing. Energy 34(11):1993–2000

    Google Scholar 

  • Yan JQ, Lo KV, Liao PH (1989) Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor. Biol Wastes 27(4):289–305

    CAS  Google Scholar 

  • Yildirim N, Genc S (2017) Energy and exergy analysis of a milk powder production system. Energy Convers Manag 149:698–705

    Google Scholar 

  • Yorgun MS, Balcioglu IA, Saygin O (2008) Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination 229(1–3):204–216

    CAS  Google Scholar 

  • Zall RR (1984) Trends in whey fractionation and utilization, a global perspective. J Dairy Sci 67(11):2621–2629

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre André Feil.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feil, A.A., Schreiber, D., Haetinger, C. et al. Sustainability in the dairy industry: a systematic literature review. Environ Sci Pollut Res 27, 33527–33542 (2020). https://doi.org/10.1007/s11356-020-09316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09316-9

Keywords

Navigation