Skip to main content

Advertisement

Log in

The inhibitory effect of mixotrophic Ochromonas gloeopara on the survival and reproduction of Daphnia similoides sinensis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mixotrophs account for a high proportion (occasionally up to 80%) of the phytoplankton biomass. Chrysophyte is one major component of mixotrophs. Because of their possible toxicity and linkage between microbial community and higher trophic levels, the effect of mixotrophic golden algae on potential grazers received much attention. The present study investigated the effect of Ochromonas gloeopara at different proportions in diet (combined with Scenedesmus obliquus) on the life history of Daphnia similoides sinensis. Results showed that osmotrophically grown O. gloeopara in light produced fish toxins and hemolysins, and negatively influenced the survival and reproduction of D. similoides sinensis. The mortality of the cladoceran increased as the proportion of O. gloeopara in food increased. The D. similoides sinensis could not reproduce throughout the life when Ochromonas comprised above 35%. When fed foods containing 15% of Ochromonas, the time to first brood of D. similoides sinensis was prolonged, together with the reduced number of offspring in first brood and total number of broods. Replacement by 100% S. obliquus delayed the time to death, but did not improve the reproduction of Daphnia. The present study indicated the strong inhibitory effect of O. gloeopara on D. similoides sinensis, and underlined the importance of evaluating its ecological role in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The flagellates. Taylor & Francis, London, pp 240–268

    Google Scholar 

  • Bennet SJ, Sanders RW, Porter KG (1990) Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol Oceanogr 35:1821–1832

    Google Scholar 

  • Blom JF, Pernthaler J (2010) Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiol Ecol 71:281–290

    CAS  Google Scholar 

  • Boenigk J, Stadler P (2004) Potential toxicity of chrysophytes affiliated with Poterioochromonas and related ‘Spumella-like’ flagellates. J Plankton Res 26:1507–1514

    Google Scholar 

  • Boxhorn JE, Holen DA, Boraas ME (1998) Toxicity of the Chrysophyte flagellate Poterioochromonas malhamensis to the rotifer Brachionus angularis. Hydrobiologia 387(388):283–287

    Google Scholar 

  • Brutemark A, Granéli E (2011) Role of mixotrophy and light for growth and survival of the toxic haptophyte Prymnesium parvum. Harmful Algae 10:388–394

    Google Scholar 

  • Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93

    CAS  Google Scholar 

  • Cao HS, Lyu K, Xiang FH, Yang Z (2014) Life history responses of Daphnia similoides simultaneously exposed to microcystin-LR and ammonia and their postexposure recovery. Environ Toxicol Chem 33:2497–2505

    CAS  Google Scholar 

  • Christoffersen K, Bosselmann S (1997) Zooplankton: growth, grazing and interactions with fish. In: Sand-Jensen K, Pedersen O (eds) Freshwater biology: priorities and development in Danish research. G. E. C. Gad Press, Copenhagen, pp 162–182

    Google Scholar 

  • DeMott WR, Müller-Navarra D (1997) The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw Biol 38:649–664

    CAS  Google Scholar 

  • Ferrão-Filho ADS, Kozlowsky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772

    Google Scholar 

  • Ger KA, Panosso R (2014) The effects of a microcystin-producing and lacking strain of Microcystis on the survival of a widespread tropical copepod (Notodiaptomus iheringi). Hydrobiologia 738:61–73

    CAS  Google Scholar 

  • Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M (2016) The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54:128–144

    Google Scholar 

  • Halevy S, Saliternik R, Avivi L (1971) Isolation of rhodamine-positive toxins from Ochromonas and other algae. Int J BioChemiPhysics 2:185–192

    CAS  Google Scholar 

  • Hansen JA (1973) Antibiotic activity of the Chrysophyte Ochromonas malhamensis. Physiol Plant 29:234–238

    CAS  Google Scholar 

  • Hiltunen T, Barreiro A, Hairston NG (2012) Mixotrophy and the toxicity of Ochromonas in pelagic food webs. Freshw Biol 57:2262–2271

    CAS  Google Scholar 

  • Jones R (2000) Mixotrophy in planktonic protists : an overview. Freshw Biol 45:219–226

    Google Scholar 

  • Kawahara T, Kumaki Y, Kamada T, Ishii T, Okino T (2009) Absolute configuration of chlorosulfolipids from the chrysophyta Ochromonas danica. J Org Chem 74:6016–6024

    CAS  Google Scholar 

  • Leeper DA, Porter KG (1995) Toxicity of the mixotrophic chrysophyte Poterioochromonas malhamensis to the cladoceran Daphnia ambigua. Arch Hydrobiol 134:207–222

    Google Scholar 

  • Lyu K, Guan HY, Wu CC, Wang XY, Wilson AE, Yang Z (2016a) Maternal consumption of non-toxic Microcystis by Daphnia magna induces tolerance to toxic Microcystis in offspring. Freshw Biol 61:219–228

    Google Scholar 

  • Lyu K, Meng QG, Zhu XX, Dai DX, Zhang L, Huang Y, Yang Z (2016b) Changes in iTRAQ-based proteomic profiling of the cladoceran Daphnia magna exposed to microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. Environ Sci Technol 50:4798–4807

    Google Scholar 

  • Lyu K, Zhang L, Gu L, Zhu XX, Wilson AE, Yang Z (2017) Cladoceran offspring tolerance to toxic Microcystis is promoted by maternal warming. Environ Pollut 227:451–459

    Google Scholar 

  • Magazanik A, Halevy S (1973) Some characteristics of Ochromonas hemolysins. Cell Mol Life Sci 29:310–311

    CAS  Google Scholar 

  • Martinezjeronimo F, Espinosachavez F, Villasenor R (2000) Effect of culture volume and adult density on the neonate production of Daphnia magna, as a test organism for aquatic toxicity tests. Environ Toxicol 15:155–159

    CAS  Google Scholar 

  • Medeiros LS, Souza JP, Winkaler EU, Carraschi SP, Cruz C, Souza-Júnior SC, Machado-Neto JG (2013) Acute toxicity and environmental risk of teflubenzuron to Daphnia magna, Poecilia reticulata and Lemna minor in the absence and presence of sediment. J Environ Sci Health B 48:600–606

    CAS  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:e15196

    CAS  Google Scholar 

  • Naji B, Derraz M, Dauta A, Boumnich L, Bouchama EO (2005) Chronic toxic effects of Microcystis aeruginosa and Oscillatoria sp., collected from El Kansera, on the survival and reproduction of Daphnia magna Strauss. Acta Bot Gallica 152:65–75

    Google Scholar 

  • Nandini S, Sarma S (2003) Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia 491:211–219

    Google Scholar 

  • Nizan S, Dimentman C, Shilo M (1986) Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnol Oceanogr 31:497–502

    Google Scholar 

  • Peng XC, Yang WD, Liu JS, Peng ZY, Lu SH, Ding WZ (2005) Characterization of the hemolytic properties of an extract from Phaeocystis globosa Scherffel. J Integr Plant Biol 47:165–171

    Google Scholar 

  • Reich K, Spiegelstein M (1964) Fish toxins in Ochromonas (Chrysomonadina). Isr J Zool 13:141

    Google Scholar 

  • Sanders RW (1991) Trophic strategies among heterotrophic flagellates. In: the biology of free-living heterotrophic flagellates. In: Patterson DJ, Larsen J (eds) . Clarendon Press, Oxford, pp 21–38

    Google Scholar 

  • Sanders RW, Porter KG, Bennett SJ, DeBiase AE (1998) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687

    Google Scholar 

  • Schwenk K, Posada D, Hebert PDN (2000) Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proc R Soc B Biol Sci 267:1833–1842

    CAS  Google Scholar 

  • Shilo M (1971) Toxins of Chrysophyceae. In: Kadis S, Ciegler A, Ajl SJ (eds) Microbial toxins. Academic Press, New York, pp 67–103

    Google Scholar 

  • Sterner RW, Hagemeier DD, Smith WL, Smith RF (1993) Phytoplankton nutrient limitation and food quality for Daphnia. Limnol Oceanogr 38:857–871

    Google Scholar 

  • Stickney HL, Hood RR, Stoecker DK (2000) The impact of mixotrophy on planktonic marine ecosystems. Ecol Model 125:203–230

    CAS  Google Scholar 

  • Stoecker DK, Hansen PJ, Caron DA, Mitra A (2017) Mixotrophy in the marine plankton. Annu Rev Mar Sci 9:311–335

    Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell EM, Lorke A, Kamjunke N (2003) Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proc Natl Acad Sci U S A 100:12776–12781

    CAS  Google Scholar 

  • Van Donk E, Cerbin S, Wilken S, Helmsing NR, Ptacnik R, Verschoor AM (2009) The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. Freshw Biol 54:1843–1855

    Google Scholar 

  • Vanni MJ, Lampert W (1992) Food quality effects on life history traits and fitness in the generalist herbivore Daphnia. Oecologia 92:48–57

    Google Scholar 

  • Wang Y, Miao AJ, Luo J, Wei ZB, Zhu JJ, Yang LY (2013) Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47:10601–10610

    CAS  Google Scholar 

  • Ward BA, Follows MJ (2016) Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci U S A 113:2958–2963

    CAS  Google Scholar 

  • Wollmann K, Deneke R, Nixdorf B, Packroff G (2000) Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4). Hydrobiologia 433:3–14

    CAS  Google Scholar 

  • Xiang FH, Yang W, Chen YF, Yang Z (2010) Acute toxicity of nitrite and ammonia to Daphnia similoides of different developmental stages: using the modified Gaussian model to describe. Bull Environ Contam Toxicol 84:708–711

    CAS  Google Scholar 

  • Xiang FH, Yang W, Yang Z, Chen YF (2011) Concentration–response function of nitrite on survival, molting, and reproduction of Daphnia similoides. J Freshw Ecol 26:33–41

    CAS  Google Scholar 

  • Yang Z, Xiang FH, Minter EJA, Lü K, Chen YF, Montagnes DJS (2011) The interactive effects of microcystin and nitrite on life-history parameters of the cladoceran Daphnia obtusa. J Hazard Mater 190:113–118

    CAS  Google Scholar 

  • Yang Z, Zhang L, Zhu X, Wang J, Montagnes DJS (2016) An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics. ISME J 10:1767–1778

    Google Scholar 

  • Yariv J, Hestrin S (1961) Toxicity of the extracellular phase of Prymnesium parvum cultures. Microbiology 24:165–175

    CAS  Google Scholar 

  • Zhang X, Warming TP, Hu HY, Christoffersen K (2009) Life history responses of Daphnia magna feeding on toxic Microcystis aeruginosa alone and mixed with a mixotrophic Poterioochromonas sp. Water Res 43:5053–5062

    CAS  Google Scholar 

  • Zhang X, Hu H, Warming TP, Christoffersen K (2011) Life history response of Daphnia magna to a mixotrophic golden alga, Poterioochromonas sp., at different food levels. Bull Environ Contam Toxicol 87:117–123

    CAS  Google Scholar 

  • Zhang QC, Song JJ, Yu RC, Yan T, Wang YF, Kong FZ, Zhou MJ (2013) Roles of mixotrophy in blooms of different dinoflagellates: implications from the growth experiment. Harmful Algae 30:10–26

    CAS  Google Scholar 

  • Zhang L, Li BP, Wu ZQ, Gu L, Yang Z (2016) Changes in growth and photosynthesis of mixotrophic Ochromonas sp. in response to different concentrations of glucose. J Appl Phycol 28:2671–2678

    CAS  Google Scholar 

  • Zhang L, Gu L, Wei Q, Zhu XX, Wang J, Wang XJ, Yang Z (2017) High temperature favors elimination of toxin-producing Microcystis and degradation of microcystins by mixotrophic Ochromonas. Chemosphere 172:96–102

    CAS  Google Scholar 

  • Zhang L, Gu L, Hou XY, Kong QD, Chen K, Zhu XX, Huang Y, Chen YF, Yang Z (2018a) Chlorophytes prolong mixotrophic Ochromonas eliminating Microcystis: temperature-dependent effect. Sci Total Environ 639:705–713

    CAS  Google Scholar 

  • Zhang L, Lyu K, Wang N, Gu L, Sun YF, Zhu XX, Wang J, Huang Y, Yang Z (2018b) Transcriptomic analysis reveals the pathways associated with resisting and degrading microcystin in Ochromonas. Environ Sci Technol 52:11102–11113

    CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (31870444), Young Elite Scientists Sponsorship Program by CAST and ISZS (ISZS-YESS Program), “333 High Level Talent Project” in Jiangsu Province (BRA2017452), Qing Lan Project of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Huang.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhu, S., Wang, N. et al. The inhibitory effect of mixotrophic Ochromonas gloeopara on the survival and reproduction of Daphnia similoides sinensis. Environ Sci Pollut Res 27, 29068–29074 (2020). https://doi.org/10.1007/s11356-020-09291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09291-1

Keywords

Navigation