Environmental risk mapping of potential abandoned uranium mine contamination on the Navajo Nation, USA, using a GIS-based multi-criteria decision analysis approach

Abstract

The Navajo Nation (NN), a sovereign indigenous tribal nation in the Southwestern United States, is home to 523 abandoned uranium mines (AUMs). Previous health studies have articulated numerous human health hazards associated with AUMs and multiple environmental mechanisms/pathways (e.g., air, water, and soil) for contaminant transport. Despite this evidence, the limited modeling of AUM contamination that exists relies solely on proximity to mines and only considers single rather than combined pathways from which the contamination is a product. In order to better understand the spatial dynamics of contaminant exposure across the NN, we adopted the following established geospatial and computational methods to develop a more sophisticated environmental risk map illustrating the potential for AUM contamination: GIS-based multi-criteria decision analysis (GIS-MCDA), fuzzy logic, and analytic hierarchy process (AHP). Eight criteria layers were selected for the GIS-MCDA model: proximity to AUMs, roadway proximity, drainage proximity, topographic landforms, wind index, topographic wind exposure, vegetation index, and groundwater contamination. Model sensitivity was evaluated using the one-at-a-time method, and statistical validation analysis was conducted using two separate environmental datasets. The sensitivity analysis indicated consistency and reliability of the model. Model results were strongly associated with environmental uranium concentrations. The model classifies 20.2% of the NN as high potential for AUM contamination while 65.7% and 14.1% of the region are at medium and low risk, respectively. This study is entirely a novel application and a crucial first step toward informing future epidemiologic studies and ongoing remediation efforts to reduce human exposure to AUM waste.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Python codes used in the analysis of this work are available in a Git repository: https://github.com/dbeene/OATsensitivity.

References

  1. Allwine KJ, Rutz FC, Shaw WJ, Rishel JP, Fritz BG, Chapman EG et al (2006) DUSTRAN 1.0 User’s Guide: A GIS-based atmospheric dust dispersion modeling system (No. PNNL-16055). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)

    Book  Google Scholar 

  2. Antonić O, Legović T (1999) Estimating the direction of an unknown air pollution source using a digital elevation model and a sample of deposition. Ecol Model 124(1):85–95. https://doi.org/10.1016/S0304-3800(99)00149-0

    Article  Google Scholar 

  3. Apeagyei E, Bank MS, Spengler JD (2011) Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos Environ 45(13):2310–2323. https://doi.org/10.1016/j.atmosenv.2010.11.015

    CAS  Article  Google Scholar 

  4. Beamer PI, Sugeng AJ, Kelly MD, Lothrop N, Klimecki W, Wilkinson ST, Loh M (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environmental Science: Processes & Impacts 16(6):1275–1281. https://doi.org/10.1039/C3EM00626C

    CAS  Article  Google Scholar 

  5. Bogle R, Redsteer MH, Vogel J (2015) Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology 228:41–51. https://doi.org/10.1016/j.geomorph.2014.08.023

    Article  Google Scholar 

  6. Böhner J, Antonić O (2009) Chapter 8 Land-surface parameters specific to topo-climatology. In T. Hengl & H. I. Reuter (Eds.), Developments in soil science (pp. 195–226). https://doi.org/10.1016/S0166-2481(08)00008-1

  7. Chang N-B, Parvathinathan G, Breeden JB (2008) Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J Environ Manag 87(1):139–153. https://doi.org/10.1016/j.jenvman.2007.01.011

    Article  Google Scholar 

  8. Charabi Y, Gastli A (2011) PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew Energy 36(9):2554–2561. https://doi.org/10.1016/j.renene.2010.10.037

    Article  Google Scholar 

  9. Chen Y, Yu J, Khan S (2010) Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ Model Softw 25(12):1582–1591. https://doi.org/10.1016/j.envsoft.2010.06.001

    Article  Google Scholar 

  10. Chen R, Xiong Y, Li J, Teng Y, Chen H, Yang J (2019) Comparison of multi-criteria analysis methodologies for the prioritization of arsenic-contaminated sites in the southwest of China. Environ Sci Pollut Res 26(12):11781–11792. https://doi.org/10.1007/s11356-019-04642-z

    Article  Google Scholar 

  11. Cooley ME, Harshbarger JW, Akers JP, Hardt WF, Hicks ON (1969) Regional hydrogeology of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah, with a section on vegetation (No. 521-A). US Government Printing Office.

  12. Daniel C (1973) One-at-a-Time Plans. J Am Stat Assoc 68(342):353–360. https://doi.org/10.1080/01621459.1973.10482433

    Article  Google Scholar 

  13. Deacon EL (1969) Physical processes near the surface of the earth. Retrieved from https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:d4fb75fd-fcbf-4406-9803-f0fe5cb7966e

  14. deLemos JL, Brugge D, Cajero M, Downs M, Durant JL, George CM, Henio-Adeky S, Nez T, Manning T, Rock T, Seschillie B, Shuey C, Lewis J (2009) Development of risk maps to minimize uranium exposures in the Navajo Churchrock mining district. Environ Health 8(1):29. https://doi.org/10.1186/1476-069X-8-29

    CAS  Article  Google Scholar 

  15. Didan K (2010) Multi-satellite earth science data record for studying global vegetation trends and changes. In: Proceedings of the 2010 international geoscience and remote sensing symposium, Honolulu, HI, USA, vol 2530, p 2530

    Google Scholar 

  16. Draut AE, Redsteer MH, Amoroso L (2012) Vegetation, substrate, and eolian sediment transport at Teesto Wash, Navajo Nation, 2009–2012 (No. Scientific Investigations Report 2012-5095). U.S. Geological Survey.

  17. Duong TTT, Lee B-K (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manag 92(3):554–562. https://doi.org/10.1016/j.jenvman.2010.09.010

    CAS  Article  Google Scholar 

  18. Elangasinghe MA, Dirks KN, Singhal N, Salmond JA, Longley I, Dirks VI (2016) A simple tool to identify representative wind sites for air pollution modelling applications. Adv Meteorol 2016:1–11

    Article  Google Scholar 

  19. Eldrandaly KA (2013) Exploring multi-criteria decision strategies in GIS with linguistic quantifiers: An extension of the analytical network process using ordered weighted averaging operators. Int J Geogr Inf Sci 27(12):2455–2482. https://doi.org/10.1080/13658816.2013.815356

    Article  Google Scholar 

  20. EPA (2007) Abandoned uranium mines and the Navajo Nation Navajo Nation AUM screening assessment report and Atlas with geospatial data. https://www.epa.gov/sites/production/files/2017-01/documents/navajo_nation_aum_screening_assess_report_atlas_geospatial_data-2007-08.pdf

  21. EPA (2019) EPA’s Airborne Spectral Photometric Environmental Collection Technology (ASPECT). https://www.epa.gov/emergency-response/aspect

  22. Erdei E, Shuey C, Pacheco B, Cajero M, Lewis J, Rubin RL (2019) Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation. J Autoimmun 99:15–23. https://doi.org/10.1016/j.jaut.2019.01.006

    CAS  Article  Google Scholar 

  23. ESRI (2016) How Fuzzy Membership works—Help | ArcGIS for Desktop. Retrieved May 17, 2019, from http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-fuzzy-membership-works.htm

  24. Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65(3):2105–2128. https://doi.org/10.1007/s11069-012-0463-3

    Article  Google Scholar 

  25. Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons

  26. Fuller DO, Williamson R, Jeffe M, James D (2003) Multi-criteria evaluation of safety and risks along transportation corridors on the Hopi Reservation. Appl Geogr 23(2–3):177–188. https://doi.org/10.1016/j.apgeog.2003.08.010

    Article  Google Scholar 

  27. Gemitzi A, Petalas C, Tsihrintzis VA, Pisinaras V (2006) Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environ Geol 49(5):653–673. https://doi.org/10.1007/s00254-005-0104-1

    CAS  Article  Google Scholar 

  28. Gong G, Mattevada S, O’Bryant SE (2014) Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res 130:59–69

    CAS  Article  Google Scholar 

  29. Gong X, Zhan FB, Brender JD, Langlois PH, Lin Y (2016) Validity of the Emission Weighted Proximity Model in estimating air pollution exposure intensities in large geographic areas. Sci Total Environ 563:478–485

    Article  Google Scholar 

  30. Gonzales M, Erdei E, Hoover J, Nash J (2018) A Review of environmental epidemiology studies in southwestern and mountain west rural minority populations. Curr Epidemiol Rep 5(2):101–113. https://doi.org/10.1007/s40471-018-0146-z

    Article  Google Scholar 

  31. González Del Campo A (2015) GIS in environmental assessment: a review of current issues and future needs. In: Progress in Environmental Assessment Policy, and Management Theory and Practice, vol 1–0, pp 121–143. https://doi.org/10.1142/9781783268382_0007

    Google Scholar 

  32. Gonzalez-Maddux C, Marcotte A, Upadhyay N, Herckes P, Williams Y, Haxel G, Robinson M (2014) Elemental composition of PM2.5 in Shiprock, New Mexico, a rural community located near coal–burning power plants and abandoned uranium mine tailings sites. Atmos Pollut Res 5(3):511–519. https://doi.org/10.5094/APR.2014.060

    CAS  Article  Google Scholar 

  33. Hamzeh M, Ali Abbaspour R, Davalou R (2015) Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting. Environ Sci Pollut Res 22(16):12511–12524. https://doi.org/10.1007/s11356-015-4485-8

    Article  Google Scholar 

  34. Harmon ME, Lewis J, Miller C, Hoover J, Ali AMS, Shuey C, ... & Ramone S (2018) Arsenic association with circulating oxidized low-density lipoprotein in a Native American community. Journal of Toxicology and Environmental Health, Part A 81(13):535-548

  35. Harmon ME, Lewis J, Miller C, Hoover J, Ali A-MS, Shuey C, Cajero M, Lucas S, Zychowski K, Pacheco B, Erdei E, Ramone S, Nez T, Gonzales M, Campen MJ (2017) Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. J Exposure Sci Environ Epidemiol 27(4):365–371. https://doi.org/10.1038/jes.2016.79

    CAS  Article  Google Scholar 

  36. Hoover J, Gonzales M, Shuey C, Barney Y, Lewis J (2017) Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA. Exposure Health 9(2):113–124. https://doi.org/10.1007/s12403-016-0226-6

    CAS  Article  Google Scholar 

  37. Hoover J, Coker E, Barney Y, Shuey C, Lewis J (2018) Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation – Arizona, New Mexico, and Utah, USA. Sci Total Environ 633:1667–1678. https://doi.org/10.1016/j.scitotenv.2018.02.288

    CAS  Article  Google Scholar 

  38. Hoover J, Erdei E, Nash J, Gonzales M (2019) A review of metal exposure studies conducted in the rural Southwestern and Mountain West region of the United States. Curr Epidemiol Rep 6(1):34–49. https://doi.org/10.1007/s40471-019-0182-3

    Article  Google Scholar 

  39. Hou D, O’Connor D, Nathanail P, Tian L, Ma Y (2017) Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ Pollut 231:1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021

    CAS  Article  Google Scholar 

  40. Hund L, Bedrick EJ, Miller C, Huerta G, Nez T, Ramone S, Shuey C, Cajero M, Lewis J (2015) A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. Journal of the Royal Statistical Society: Series A (Statistics in Society) 178(4):1069–1091. https://doi.org/10.1111/rssa.12099

    Article  Google Scholar 

  41. Iowa State University (n.d.) IEM : ASOS/AWOS Network. Retrieved June 20, 2019, from Iowa Environmental Mesonet of Iowa State University website: https://mesonet.agron.iastate.edu/ASOS/

  42. Jenness J (2006) Topographic Position Index (TPI) v. 1.2 (No. 1.2). Retrieved from http://www.jennessent.com/downloads/tpi_documentation_online.pdf

  43. Jiang H, Eastman JR (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci 14(2):173–184. https://doi.org/10.1080/136588100240903

    Article  Google Scholar 

  44. Khoshand A, Bafrani AH, Zahedipour M, Mirbagheri SA, Ehtehsami M (2018) Prevention of landfill pollution by multicriteria spatial decision support systems (MC-SDSS): development, implementation, and case study. Environ Sci Pollut Res 25(9):8415–8431. https://doi.org/10.1007/s11356-017-1099-3

    CAS  Article  Google Scholar 

  45. Kim KH, Lee SB, Woo D, Bae GN (2015) Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmospheric Pollut Res 6(6):1024–1034

    Article  Google Scholar 

  46. Kuo RJ, Chi SC, Kao SS (2002) A decision support system for selecting convenience store location through integration of fuzzy AHP and arti®cial neural network. Comput Ind 16

  47. Lahr J, Kooistra L (2010) Environmental risk mapping of pollutants: state of the art and communication aspects. Sci Total Environ 408(18):3899–3907

    CAS  Article  Google Scholar 

  48. Lameman Austin TL (2012) Distribution of uranium and other trace constituents in drainages downstream from reclaimed uranium mines in Cove wash, Arizona (University of New Mexico). Retrieved from https://digitalrepository.unm.edu/wr_sp/91

  49. Lewis J, Hoover J, MacKenzie D (2017) Mining and Environmental Health Disparities in Native American Communities. Curr Environ Health Rep 4(2):130–141. https://doi.org/10.1007/s40572-017-0140-5

    Article  Google Scholar 

  50. Li W, Zhang M, Wang M, Han Z, Liu J, Chen Z, Liu B, Yan Y, Liu Z (2018) Screening of groundwater remedial alternatives for brownfield sites: a comprehensive method integrated MCDA with numerical simulation. Environ Sci Pollut Res 25(16):15844–15861. https://doi.org/10.1007/s11356-018-1721-z

    Article  Google Scholar 

  51. Lindsey CG, Chen J, Dye TS, Richards LW, Blumenthal DL (1999) Meteorological processes affecting the transport of emissions from the Navajo Generating Station to Grand Canyon National Park. J Appl Meteorol 38(8):1031–1048. https://doi.org/10.1175/1520-0450(1999)038<1031:MPATTO>2.0.CO;2

    Article  Google Scholar 

  52. Lowe AA, Bender B, Liu AH, Solomon T, Kobernick A, Morgan W, Gerald LB (2018) Environmental concerns for children with asthma on the Navajo Nation. Annals Am Thoracic Soc 15(6):745–753. https://doi.org/10.1513/AnnalsATS.201708-674PS

    Article  Google Scholar 

  53. Malczewski J (2006a) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726. https://doi.org/10.1080/13658810600661508

    Article  Google Scholar 

  54. Malczewski J (2006b) Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int J Appl Earth Obs Geoinf 8(4):270–277. https://doi.org/10.1016/j.jag.2006.01.003

    Article  Google Scholar 

  55. McNeley JK (1981) Holy wind in Navajo philosophy - James Kale McNeley - Google Books. Retrieved from https://books.google.com/books?id=RwndbkYQUfkC&dq=navajo+nation+wind&lr=&source=gbs_navlinks_s

  56. Paquette J, Lowry J (2012) Flood hazard modelling and risk assessment in the Nadi River Basin, Fiji, using GIS and MCDA. South Pacific J Nat Appl Sci 30(1):33. https://doi.org/10.1071/SP12003

    Article  Google Scholar 

  57. Rangel-Buitrago N, Anfuso G (2015) Review of the existing risk assessment methods. In: Rangel-Buitrago N, Anfuso G (eds) Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain), pp 7–13. https://doi.org/10.1007/978-3-319-15844-0_2

    Google Scholar 

  58. Rock T (2017) Developing policy around uranium contamination on the Navajo Nation using traditional ecological knowledge (Doctoral Dissertation). Northern Arizona University, Flagstaff, AZ

    Google Scholar 

  59. Ryan PH, LeMasters GK, Levin L, Burkle J, Biswas P, Hu S, Grinshpun S, Reponen T (2008) A land-use regression model for estimating microenvironmental diesel exposure given multiple addresses from birth through childhood. Sci Total Environ 404(1):139–147. https://doi.org/10.1016/j.scitotenv.2008.05.051

    CAS  Article  Google Scholar 

  60. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  61. Sherry JW (2002) Land, wind, and hard words: a story of Navajo activism. Retrieved from https://books.google.com/books?id=1B2r7wyQYGUC&dq=navajo+nation+wind&lr=&source=gbs_navlinks_s

  62. U.S. Census Bureau (n.d.) American FactFinder. Retrieved July 2, 2019, from American FactFinder website: https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t

  63. United States. Government Accountability Office, & Mittal, A. K. (2011) Abandoned Mines: Information on the Number of Hardrock Mines, Cost of Cleanup, and Value of Financial Assurances: Testimony Before the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, House of Representativese. US Government Accountability Office

  64. U.S. Environmental Protection Agency (2006) Abandoned uranium mines and the Navajo Nation: Navajo Nation AUM screening assessment report and Atlas with geospatial data. San Francisco, CA.

  65. U.S. Geological Survey (1975) National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance data [Dataset]. Denver, CO

    Google Scholar 

  66. U.S. Geological Survey (n.d.) EarthExplorer - Home. Retrieved June 20, 2019, from EarthExplorer website: https://earthexplorer.usgs.gov/

  67. Yang J, Teng Y, Song L, Zuo R (2016) Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLOS ONE 11(12):e0168528. https://doi.org/10.1371/journal.pone.0168528

    CAS  Article  Google Scholar 

  68. Yen J, Langari R (1999) Fuzzy logic : intelligence, control, and information. Upper Saddle River, N.J. : Prentice Hall, c1999. (Centennial Lower Level 2 QA9.64 Y46 1999).

  69. Young J, Rinner C, Patychuk D (2010) The effect of standardization in multicriteria decision analysis on health policy outcomes. In: Phillips-Wren G, Jain LC, Nakamatsu K, Howlett RJ (eds) Advances in intelligent decision technologies. Springer, Berlin Heidelberg, pp 299–307

    Google Scholar 

  70. Yudego EA, Candás JL, Álvarez EÁ, López MJ, García L, Fernández-Pacheco VM (2018) Computational tools for analysing air pollutants dispersion: a comparative review. In: Multidisciplinary Digital Publishing Institute Proceedings, vol 2, No. 23, p 1408

    Google Scholar 

  71. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  72. Zychowski KE, Kodali V, Harmon M, Tyler CR, Sanchez B, Ordonez Suarez Y, Herbert G, Wheeler A, Avasarala S, Cerrato JM, Kunda NK, Muttil P, Shuey C, Brearley A, Ali AM, Lin Y, Shoeb M, Erdely A, Campen MJ (2018) Respirable uranyl-vanadate-containing particulate matter derived from a legacy uranium mine site exhibits potentiated cardiopulmonary toxicity. Toxicol Sci 164(1):101–114. https://doi.org/10.1093/toxsci/kfy064

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health grants 1P50ES026102, 1P42ES025589, and Assistance Agreement No. 83615701 awarded by the U.S. Environmental Protection Agency to the University of New Mexico Health Sciences Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Lin.

Ethics declarations

Disclaimer

This work has not been formally reviewed by U.S. EPA or NIH. The views expressed are solely those of the authors and do not necessarily reflect those of these Agencies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Hoover, J., Beene, D. et al. Environmental risk mapping of potential abandoned uranium mine contamination on the Navajo Nation, USA, using a GIS-based multi-criteria decision analysis approach. Environ Sci Pollut Res 27, 30542–30557 (2020). https://doi.org/10.1007/s11356-020-09257-3

Download citation

Keywords

  • Multi-criteria decision analysis
  • Abandoned uranium mines
  • Environmental risk mapping
  • Navajo Nation
  • Weighted linear combination
  • Analytic hierarchy process