Skip to main content

Advertisement

Log in

Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors’ Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural—autochthonous and allochthonous—as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C29–C36) and steranes (C27–C29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aboul-Kassim TA, Simoneit BR (1995) Petroleum hydrocarbon fingerprinting and sediment transport assessed by molecular biomarker and multivariate statistical analyses in the Eastern Harbour of Alexandria, Egypt. Mar Pollut Bull 30:63–73

    Google Scholar 

  • Aboul-Kassim TA, Simoneit BR (1996) Lipid geochemistry of surficial sediments from the coastal environment of Egypt I. Aliphatic hydrocarbons-characterization and sources. Mar Chem 54:135–158

    CAS  Google Scholar 

  • Allan J, Douglas AG (1977) Variations in the content and distribution of n-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank. Geochim Cosmochim Acta 41:1223–1230

    CAS  Google Scholar 

  • Aller RC, Cochran JK (2019) The critical role of bioturbation for particle dynamics, priming potential, and organic C remineralization in marine sediments: local and basin scales. Front Earth Sci 7:157. https://doi.org/10.3389/feart.2019.00157

    Article  Google Scholar 

  • Alves CA, Vicente A, Monteiro C, Gonçalves C, Evtyugina M, Pio C (2011) Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci Total Environ 409:466–1475

    Google Scholar 

  • Andrade C, Freitas MDC, Moreno J, Craveiro SC (2004) Stratigraphical evidence of Late Holocene barrier breaching and extreme storms in lagoonal sediments of Ria Formosa, Algarve, Portugal. Mar Geol 210:339–362

    Google Scholar 

  • Barreira LA, Mudge SM, Bebianno MJ (2007a) Polycyclic aromatic hydrocarbons in clams Ruditapes decussatus (Linnaeus, 1758). J Environ Monit 9:187–198

    CAS  Google Scholar 

  • Barreira LA, Mudge SM, Bebianno MJ (2007b) Concentration and sources of polycyclic aromatic hydrocarbons in sediments from the Ria Formosa lagoon. Environ Forensic 8:231–243

    CAS  Google Scholar 

  • Bebianno MJ (1995) Effects of pollutants in the Ria Formosa lagoon, Portugal. Sci Total Environ 171:107–115

    CAS  Google Scholar 

  • Boski T, Pessoa J, Pedro P, Thorez J, Hall I, Alveirinho Dias J (1998) Factors governing abundance of hydrolyzable amino acids in the sediments from Goban Spur transect. Prog Oceanogr 42:145–164

    Google Scholar 

  • Bouloubassi I, Fillaux J, Saliot A (2001) Hydrocarbons in surface sediments from the Changjiang (Yangtze river) estuary, East China Sea. Mar Pollut Bull 42:1335–1346

    CAS  Google Scholar 

  • Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359

    Google Scholar 

  • Brassell SC, McEvoy J, Hoffmann CF, Lamb NA, Peakman TM, Maxwell JR (1984) Isomerisation, rearrangement and aromatisation of steroids in distinguishing early stages of diagenesis. Org Geochem 6:11–23

    CAS  Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15

    CAS  Google Scholar 

  • Byrne R, Ingram BL, Starratt S, Malamud-Roam F, Collins JN, Conrad ME (2001) Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. Quat Res 55:66–76

    CAS  Google Scholar 

  • Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583

    CAS  Google Scholar 

  • Chevalier N, Savoye N, Dubois S, Lama ML, David V, Lecroart P, le Ménach K, Budzinski H (2015) Precise indices based on n-alkane distribution for quantifying sources of sedimentary organic matter in coastal systems. Org Geochem 88:69–77

    CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1–22

    Google Scholar 

  • Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P (2020) Vascular plants are globally significant contributors to marine carbon fluxes and sinks. Annu Rev Mar Sci 12:469–497

    Google Scholar 

  • Cranwell PA (1984) Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org Geochem 7:25–37

    CAS  Google Scholar 

  • Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org Geochem 11:513–527

    CAS  Google Scholar 

  • Cunha AH, Santos R (2009) The use of fractals to assess seagrass landscape stability: a case study from the barrier island system of Ria Formosa (south of Portugal). Estuar Coast Shelf Sci 84:584–590

    Google Scholar 

  • Cunha AH, Assis J, Serrão EA (2009) Estimation of available seagrass meadow area in Portugal for transplanting purposes. J Coast Res 56:1100–1104

    Google Scholar 

  • Dashtbozorg D, Bakhtiari AR, Shushizadeh MR, Taghavi L (2019) Quantitative evaluation of n-alkanes, PAHs, and petroleum biomarker accumulation in beach-stranded tar balls and coastal surface sediments in the Bushehr Province, Persian Gulf (Iran). Mar Pollut Bull 146:801–815

    CAS  Google Scholar 

  • De la Rosa JM, González-Pérez JA, González-Vila FJ, Knicker H, Araújo MF (2011) Molecular composition of sedimentary humic acids from South West Iberian Peninsula: a multi-proxy approach. Org Geochem 42:791–802

    Google Scholar 

  • De la Rosa JM, Araújo MF, González-Pérez JA, González-Vila FJ, Soares AM, Martins JM, Leorri E, Corbett R, Fatela F (2012) Organic matter sources for tidal marsh sediment over the past two millennia in the Minho River estuary (NW Iberian Peninsula). Org Geochem 53:16–24

    Google Scholar 

  • Delgado J, Boski T, Nieto JM, Pereira L, Moura D, Gomes A, Sousa C, García-Tenorio R (2012) Sea-level rise and anthropogenic activities recorded in the late Pleistocene/Holocene sedimentary infill of the Guadiana Estuary (SW Iberia). Quat Sci Rev 33:121–141

    Google Scholar 

  • Dignac MF, Houot S, Derenne S (2006) How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-GC/MS. J Anal Appl Pyrolysis 75:128–139

    CAS  Google Scholar 

  • Duarte P, Azevedo B, Guerreiro M, Ribeiro C, Bandeira R, Pereira A, Falcão M, Serpa D, Reia J (2008) Biogeochemical modelling of Ria Formosa (South Portugal). Hydrobiologia 611:115–132

    CAS  Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:96–968

    Google Scholar 

  • Eganhouse RP, Pontolillo J (2008) Susceptibility of synthetic long-chain alkylbenzenes to degradation in reducing marine sediments. Environ Sci Technol 42:6361–6368

    CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    CAS  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124

    CAS  Google Scholar 

  • Galletti GC, Reeves JB (1992) Pyrolysis/gas chromatography/ion-trap detection of polyphenols (vegetable tannins): preliminary results. Org Mass Spectrom 27:226–230

    CAS  Google Scholar 

  • Gogou A, Stratigakis N, Kanakidou M, Stephanou EG (1996) Organic aerosols in Eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Org Geochem 25:79–96

    CAS  Google Scholar 

  • González-Pérez JA, Almendros G, De la Rosa JM, González-Vila FJ (2014) Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py-GC/MS). J Anal Appl Pyrolysis 109:1–8

    Google Scholar 

  • Gonzalez-Vila FJ, Polvillo O, Boski T, Moura D, de Andrés JR (2003) Biomarker patterns in a time-resolved Holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/Spain border). Org Geochem 34:1601–1613

    CAS  Google Scholar 

  • Gough MA, Rowland SJ (1990) Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature 344:648–650

    CAS  Google Scholar 

  • Grantham PJ (1986) The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil. Org Geochem 9:1–10

    CAS  Google Scholar 

  • Grimalt JO, Yruela I, Sáiz-Jiménez C, Toja J, De Leeuw JW, Albaiges J (1991) Sedimentary lipid biogeochemistry of a hypereutrophic alkaline lagoon. Geochim Cosmochim Acta 55:2555–2577

    CAS  Google Scholar 

  • Grossi V, Raphel D (2003) Long-chain (C19-C29) 1-chloro-n-alkanes in leaf waxes of halophytes of the Chenopodiaceae. Phytochemistry 63:693–698

    CAS  Google Scholar 

  • He D, Zhang K, Cui X, Tang J, Suna Y (2018) Spatiotemporal variability of hydrocarbons in surface sediments from an intensively human-impacted Xiaoqing River-Laizhou Bay system in the eastern China: occurrence, compositional profile and source apportionment. Sci Total Environ 645:1172–1182

    CAS  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    CAS  Google Scholar 

  • Hedges JI, Mann DC (1979) The characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Acta 43:1803–1807

    CAS  Google Scholar 

  • Heim S, Schwarzbauer J, Kronimus A, Littke R, Woda C, Mangini A (2004) Geochronology of anthropogenic pollutants in riparian wetland sediments of the Lippe River (Germany). Org Geochem 35:1409–1425

    CAS  Google Scholar 

  • Hernandez ME, Mead R, Peralba MC, Jaffé R (2001) Origin and transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matter. Org Geochem 32:21–32

    CAS  Google Scholar 

  • Hines ME, Knollmeyer SL, Tugel JB (1989) Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnol Oceanogr 34:578–590

    CAS  Google Scholar 

  • Huang WY, Meinschein WG (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 43:739–745

    CAS  Google Scholar 

  • Isobe KO, Zakaria MP, Chiem NH, Minh LY, Prudente M, Boonyatumanond R, Saha M, Sarkar S, Takada H (2004) Distribution of linear alkylbenzenes (LABs) in riverine and coastal environments in South and Southeast Asia. Water Res 38:2449–2459

    CAS  Google Scholar 

  • Jaffé R, Mead R, Hernandez ME, Peralba MC, DiGuida OA (2001) Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org Geochem 32:507–526

    Google Scholar 

  • Jeng WL (2006) Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem 102:242–251

    CAS  Google Scholar 

  • Jiménez-Morillo NT, de la Rosa JM, Waggoner D, Almendros G, González-Vila FJ, González-Pérez JA (2016) Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145:266–273

    Google Scholar 

  • Kaal J, Serrano O, Nierop KG, Schellekens J, Cortizas AM, Mateo MÁ (2016) Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat. Aquat Bot 133:50–61

    CAS  Google Scholar 

  • Kennicutt MC II, Barker C, Brooks JM, De Freitas DA, Zhu GH (1987) Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas. Org Geochem 11:41–51

    CAS  Google Scholar 

  • Kim GB, Maruya KA, Lee RF, Lee JH, Koh CH, Tanabe S (1999) Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Mar Pollut Bull 38:7–15

    CAS  Google Scholar 

  • Kumar M, Boski T, Lima-Filho FP, Bezerra FH, González-Vila FJ, González-Pérez JA (2018) Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary. Quat Int 476:34–45

    Google Scholar 

  • Kumar M, Boski T, Lima-Filho FP, Bezerra FH, González-Vila FJ, Alam Buhuiyan MK, González-Pérez JA (2019) Biomarkers as indicators of sedimentary organic matter sources and early diagenetic transformation of pentacyclic triterpenoids in a tropical mangrove ecosystem. Estuar Coast Shelf Sci 229:106403. https://doi.org/10.1016/j.ecss.2019.106403

    Article  CAS  Google Scholar 

  • Kumar M, Boski T, González-Vila FJ, Jiménez-Morillo NT, González-Pérez JA (2020) Characteristics of organic matter sources to the Guadiana estuary salt marsh sediments (SW Iberian Peninsula). Cont Shelf Res 197:104076. https://doi.org/10.1016/j.csr.2020.104076

    Article  Google Scholar 

  • Leorri E, Mitra S, Irabien MJ, Zimmerman AR, Blake WH, Cearreta A (2014) A 700-year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments. Sci Total Environ 470:240–247

    Google Scholar 

  • Liste HH, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    CAS  Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of steroids. Science 217:491–504

    CAS  Google Scholar 

  • Madureira MJ, Vale C, Gonçalves MS (1997) Effect of plants on sulphur geochemistry in the Tagus salt-marshes sediments. Mar Chem 58:27–37

    CAS  Google Scholar 

  • Martins M, Ferreira AM, Vale C (2008) The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere 71:1599–1606

    CAS  Google Scholar 

  • Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284

    CAS  Google Scholar 

  • McKirdy DM, Thorpe CS, Haynes DE, Grice K, Krull ES, Halverson GP, Webster LJ (2010) The biogeochemical evolution of the Coorong during the mid-to late Holocene: an elemental, isotopic and biomarker perspective. Org Geochem 41:96–110

    CAS  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    CAS  Google Scholar 

  • Meyers PA, Eadie BJ (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 20:47–56

    CAS  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    CAS  Google Scholar 

  • Meziane T, Bodineau L, Retiere C, Thoumelin G (1997) The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. J Sea Res 38:47–58

    Google Scholar 

  • Miralles I, Piedra-Buena A, Almendros G, González-Vila FJ, Delgado Calvo-Flores R, González-Pérez JA (2015) Pyrolytic appraisal of the lignin signature in soil humic acids: assessment of its usefulness as carbon sequestration marker. J Anal Appl Pyrolysis 113:107–115

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Wiley, New York

    Google Scholar 

  • Mizukawa K, Takada H, Ito M, Geok YB, Hosoda J, Yamashita R, Saha M, Suzuki S, Miguez C, Frias J, Antunes JC (2013) Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets. Mar Pollut Bull 70:296–302

    CAS  Google Scholar 

  • Mudge SM, Duce CE (2005) Identifying the source, transport path and sinks of sewage derived organic matter. Environ Pollut 136:209–220

    CAS  Google Scholar 

  • Mudge SM, East JA, Bebianno MJ, Barreira LA (1998) Fatty acids in the Ria Formosa lagoon, Portugal. Org Geochem 29:963–977

    CAS  Google Scholar 

  • Mudge SM, Icely JD, Newton A (2008) Residence times in a hypersaline lagoon: using salinity as a tracer. Estuar Coast Shelf Sci 77:278–284

    Google Scholar 

  • Newton A, Icely JD, Falcão M, Nobre A, Nunes JP, Ferreira JG, Vale C (2003) Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Cont Shelf Res 23:1945–1961

    Google Scholar 

  • Nierop KG, Speelman EN, de Leeuw JW, Reichart GJ (2011) The omnipresent water fern Azolla caroliniana does not contain lignin. Org Geochem 42:846–850

    CAS  Google Scholar 

  • Odum WE, Fisher JS, Pickral JC (1979) Factors controlling the flux of particulate organic carbon from estuarine wetlands. In: Ecological processes in coastal and marine systems. Springer, US, pp 69–80

    Google Scholar 

  • Ortiz JE, Díaz-Bautista A, Aldasoro JJ, Torres T, Gallego JLR, Moreno L, Estébanez B (2011) n-Alkan-2-ones in peat-forming plants from the Roñanzas ombrotrophic bog (Asturias, northern Spain). Org Geochem 42:586–592

    CAS  Google Scholar 

  • Otto A, Simoneit BR (2001) Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim Cosmochim Acta 65:35053527

    Google Scholar 

  • Ouyang X, Lee SY (2014) Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11:5057–5071

    Google Scholar 

  • Pacheco A, Vila-Concejo A, Ferreira Ó, Dias JA (2008) Assessment of tidal inlet evolution and stability using sediment budget computations and hydraulic parameter analysis. Mar Geol 247:104–127

    Google Scholar 

  • Peters KE, Moldowan JM (1991) Effects of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem 17:47–61

    CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. In: Biomarkers and isotopes in the environment and human history, vol 1, 2nd edn. Cambridge University press, NJ, p 471

    Google Scholar 

  • Peulvé S, De Leeuw JW, Sicre MA, Baas M, Saliot A (1996a) Characterization of macromolecular organic matter in sediment traps from the northwestern Mediterranean Sea. Geochim Cosmochim Acta 60:1239–1259

    Google Scholar 

  • Peulvé S, Sicre MA, Saliot A, De Leeuw JW, Baas M (1996b) Molecular characterization of suspended and sedimentary organic matter in an Arctic delta. Limnol Oceanogr 41:488–497

    Google Scholar 

  • Qu WC, Dickman M, Wang SM, Wu RJ, Zhang PZ, Chen JF (1999) Evidence for an aquatic plant origin of ketones found in Taihu Lake sediments. Hydrobiologia 397:149–154

    CAS  Google Scholar 

  • Quantin C, Joner EJ, Portal JM, Berthelin J (2005) PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ Pollut 134:315–322

    CAS  Google Scholar 

  • Quemeneur M, Marty Y (1992) Sewage influence in a macrotidal estuary: fatty acid and sterol distributions. Estuar Coast Shelf Sci 34:347–363

    CAS  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    CAS  Google Scholar 

  • Rampen SW, Abbas BA, Schouten S, Sinninghe Damste JS (2010) A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol Oceanogr 55:91–105

    CAS  Google Scholar 

  • Ribeiro J, Monteiro CC, Monteiro P, Bentes L, Coelho R, Gonçalves JM, Lino PG, Erzini K (2008) Long-term changes in fish communities of the Ria Formosa coastal lagoon (southern Portugal) based on two studies made 20 years apart. Estuar Coast Shelf Sci 76:57–68

    Google Scholar 

  • Rielley G, Collier RJ, Jones DM, Eglinton G (1991) The biogeochemistry of Ellesmere Lake, UK-I: source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem 17:901–912

    Google Scholar 

  • Rommerskirchen F, Plader A, Eglinton G, Chikaraishi Y, Rullkötter J (2006) Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem 37:1303–1332

    CAS  Google Scholar 

  • Sáiz-Jiménez C, De Leeuw JW (1984) Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org Geochem 6:417–422

    Google Scholar 

  • Schefuß E, Ratmeyer V, Stuut JBW, Jansen JF, Damsté JSS (2003) Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta 67:1757–1767

    Google Scholar 

  • Schwark L, Zink K, Lechterbeck J (2002) Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30:463–466

    CAS  Google Scholar 

  • Sherblom PM, Gschwend PM, Eganhouse RP (1992) Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes. J Chem Eng Data 37:394–399

    CAS  Google Scholar 

  • Sicre MA, Peulvé S, Saliot A, De Leeuw JW, Baas M (1994) Molecular characterization of the organic fraction of suspended matter in the surface waters and bottom nepheloid layer of the Rhone delta using analytical pyrolysis. Org Geochem 21:11–26

    CAS  Google Scholar 

  • Sousa C, Boski T, Pereira L (2019) Holocene evolution of a barrier island system, Ria Formosa, South Portugal. The Holocene 29:64–76

    Google Scholar 

  • Stout SA, Magar VS, Uhler RM, Ickes J, Abbott J, Brenner R (2001) Characterization of naturally-occurring and anthropogenic PAHs in urban sediments-Wycoff/eagle harbor superfund site. Environ Forensic 2:287–300

    CAS  Google Scholar 

  • Takada H, Ishiwatari R (1990) Biodegradation experiments of linear alkylbenzenes (LABs): isomeric composition of C12 LABs as an indicator of the degree of LAB degradation in the aquatic environment. Environ Sci Technol 24:86–91

    CAS  Google Scholar 

  • Tanner BR, Uhle ME, Kelley JT, Mora CI (2007) C3/C4 variations in salt-marsh sediments: an application of compound specific isotopic analysis of lipid biomarkers to late Holocene paleoenvironmental research. Org Geochem 38:474–484

    CAS  Google Scholar 

  • Tanner BR, Uhle ME, Mora CI, Kelley JT, Schuneman PJ, Lane CS, Allen ES (2010) Comparison of bulk and compound-specific δ13C analyses and determination of carbon sources to salt marsh sediments using n-alkane distributions (Maine, USA). Estuar Coast Shelf Sci 86:283–291

    CAS  Google Scholar 

  • Terán A, González-Vila FJ, González-Pérez JA (2009) Detection of organic contamination in sediments by double-shoot pyrolysis–GC/MS. Environ Chem Lett 7:301–308

    Google Scholar 

  • Tinoco P, Almendros G, González-Vila FJ (2002) Impact of the vegetation on the lignin pyrolytic signature of soil humic acids from Mediterranean soils. J Anal Appl Pyrolysis 64:407–420

    CAS  Google Scholar 

  • Tipple BJ, Pagani M (2013) Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochim Cosmochim Acta 111:64–77

    CAS  Google Scholar 

  • Van Heemst JD, Peulvé S, De Leeuw JW (1996) Novel algal polyphenolic biomacromolecules as significant contributors to resistant fractions of marine dissolved and particulate organic matter. Org Geochem 24:629–640

    Google Scholar 

  • Venkatesan MI, Kaplan IR (1982) Distribution and transport of hydrocarbons in surface sediments of the Alaskan outer continental shelf. Geochim Cosmochim Acta 46:2135–2149

    CAS  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    CAS  Google Scholar 

  • Volkman JK, Farrington JW, Gagosian RB, Wakeham SG (1983) Lipid composition of coastal sediments from the Peru upwelling region. In: Bjoroy M et al (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 28–240

    Google Scholar 

  • Volkman JK, Holdsworth DG, Neill GP, Bavor HJ (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ 112:203–219

    CAS  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments–I. Compounds having anthropogenic origins. Geochim Cosmochim Acta 44:403–413

    CAS  Google Scholar 

  • Wang Z, Liu Z, Yang Y, Li T, Liu M (2012) Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 89:221–227

    CAS  Google Scholar 

  • Wen Z, Ruiyong W, Radke M, Qingyu W, Guoying S, Zhili L (2000) Retene in pyrolysates of algal and bacterial organic matter. Org Geochem 31:757–762

    Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    CAS  Google Scholar 

  • Zakaria MP, Okuda T, Takada H (2001) Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution. Mar Pollut Bull 42:1357–1366

    CAS  Google Scholar 

  • Zegouagh Y, Derenne S, Largeau C, Bertrand P, Sicre MA, Saliot A, Rousseau B (1999) Refractory organic matter in sediments from the North–West African upwelling system: abundance, chemical structure and origin. Org Geochem 30:101–117

    CAS  Google Scholar 

  • Zhang J, Cai L, Yuan D, Chen M (2004) Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China. Mar Pollut Bull 49:479–486

    CAS  Google Scholar 

  • Zielinska B, Sagebiel J, Arnott WP, Rogers CF, Kelly KE, Wagner DA, Lighty JS, Sarofim AF, Palmer G (2004) Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ Sci Technol 38:2557–2567

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Joaquín Delgado and Dr. Carlos Sousa for their help during core sediment sampling. Ms. Alba Carmona Navarro and Ms. Desire Monís Carrere are thanked for technical assistance.

Funding

The authors received funding from EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain) for Mukesh Kumar. The research was supported by EU contract numbers FP7-ENV-2011, Grant agreement no: 282845 and FP7- 534 ENV-2012 Grant agreement no: 308392 and also from MINECO project INTERCARBON (CGL2016-78937-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. González-Pérez.

Additional information

Responsible editor: Vedula VSS Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Boski, T., González-Vila, F.J. et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal). Environ Sci Pollut Res 27, 28962–28985 (2020). https://doi.org/10.1007/s11356-020-09235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09235-9

Keywords

Navigation