Skip to main content

Advertisement

Log in

Pelagic Sargassum spp. capture CO2 and produce calcite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pelagic Sargassum is considered an ecological plague that is causing adverse economic impacts to the tourist and fishing industries in the Caribbean. However, its proliferation might be playing an important role to reduce global warming, as it removes a high content of CO2 from the atmosphere and transforms it into calcium carbonate, in its calcite phase, producing sediment after it dies. We quantified the amount of calcite in Sargassum samples collected from the Mexican Caribbean coast in 2019. Samples were divided into three parts: vesicles, thallus, and leaves. In each part, the amount of carbon, oxygen, and calcium was determined by means of X-ray energy dispersion to confirm the existence of a calcite crystalline phase. Imaging methodologies and IR spectroscopy complemented the structural studies. The thermogravimetric analysis determined that approximately 5% of the CO2 captured by the Sargassum was converted into calcite. Thus, by extrapolation, the Atlantic Sargasso Belt retained approximately 19.3 million tons of CO2 from 2011 to 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, I. A., Isabella, A., & Hollenberg, G. J. Marine algae of California. Stanford University Press; 1992

  • Abou-El-Wafa, G. S., Shaaban, K. A., El-Naggar, M. E., & Shaaban. A. Bioactive constituents and biochemical composition of the Egyptian brown alga Sargassum subrepandum (Forsk). Rev Latinoam química 2011;39(1–2):62–74

  • Baer, Julia; Stengel, Dagmar B. Variability in growth, development and reproduction of the non-native seaweed Sargassum muticum (Phaeophyceae) on the Irish west coast. EstuarineCoastal and Shelf Science, 2010; 90 (4):185–194

  • Barsanti W (2006) In: Barsanti L, Gualtieri P (eds) Algae—anatomy, biochemistry, and biotechnology. CRC press, Taylor & Francis, Boca Raton, London, p 320pp

    Google Scholar 

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2(3):207–213. https://doi.org/10.1007/BF02179777

    Article  Google Scholar 

  • Casas Valdez M et al (2006) El alga marina Sargassum (Sargassaceae): una alternativa tropical para la alimentación de ganado caprino. Rev Biol Trop 54(1):83–92

    Article  CAS  Google Scholar 

  • Cinvestav. https://avanceyperspectiva.cinvestav.mx/sargazo-conociendo-al-enemigo/. Consulted in January 2019

  • Cuezva S, García-Guinea J, Fernandez-Cortes A, Benavente D, Ivars J, Galan JM, Sanchez-Moral S (2016) Composition, uses, provenance and stability of rocks and ancient mortars in a Theban tomb in Luxor (Egypt). Mater Struct 49(3):941–960. https://doi.org/10.3844/ajessp.2017.58.64

    Article  CAS  Google Scholar 

  • Fabry VJ, Deuser WG (1991) Aragonite and magnesian calcite fluxes to the deep Sargasso Sea. Deep Sea research part a. Oceanographic Research Papers 38(6):713–728

    Article  CAS  Google Scholar 

  • Fragoso D, Ramirez-Cahero F, Rodriguez-Galvan A et al (2010) Characterization of the CaCO3 biomineral in coralline red algae (Corallinales) from the Pacific coast of Mexico Caracterización del biomineral CaCO3 en algas Rojas coralinas (Corallinales) de las costas del Pacífico Mexicano. Ciencias Mar 36(1):41–58

    Article  CAS  Google Scholar 

  • Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., & Rodríguez- García, M. E. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J Mater Civ Eng 2009; 21(11), 694–698

  • Hu C et al. (2016) Sargassum watch warns of incoming seaweed. EOS, Published on 02 September 2016. https://doi.org/10.1029/2016EO058355

  • Louime C, Fortune J, Gervais G (2017) Sargassum invasion of coastal environments: a growing concern. Am J Environ Sci 13(1):58–64

    Article  Google Scholar 

  • Moanga, D. A. (2015). Karenia Brevis hot spots in the West Florida shelf and their associated socioeconomic implications

  • Muñoz Bautista A.N. Composición Taxonómica y Abundancia de la Macrofauna Asociada a Sargassum (Phaeophyceae: Fucales) Flotante en el Sistema Arrecifal Veracruzano, Suroeste del Golfo de México 2013:54

  • Murakami K, Yamaguchi Y, Noda K, Fujii T, Shinohara N, Ushirokawa T, Sugawa-Katayama Y, Katayama M (2011) Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (turner) C. Agardh J Food Compos Anal 24(2):231–236. https://doi.org/10.1016/j.jfca.2010.08.004

    Article  CAS  Google Scholar 

  • NOAA. https://www.esrl.noaa.gov/gmd/ccgg/trends/ Consulted in March 2020

  • Noah AZ, El Semary MA, Youssef AM, El-Safty MA (2017) Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egypt J Pet 26(1):33–40. https://doi.org/10.1016/j.ejpe.2016.03.002

    Article  Google Scholar 

  • Noiraksar, T., & Ajisaka, T. Taxonomy and distribution of Sargassum (Phaeophyceae) in the Gulf of Thailand. In Nineteenth International Seaweed Symposium (pp. 513–527). Springer, Dordrecht. 2008

  • NYT.https://www.nytimes.com/es/2019/08/16/espanol/america-latina/ sargazoplayas-mexico.html. Consulted in September 2019

  • Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J, Liu Y (2013) Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar Drugs 11(1):20–32. https://doi.org/10.3390/md11010020

    Article  CAS  Google Scholar 

  • Pérez-Salcedo KY, Alonso-Lemus IL, Quintana P, Mena-Durán CJ, Barbosa R, Escobar B (2019) Self-doped Sargassum spp. derived biocarbon as electrocatalysts for ORR in alkaline media. Int J Hydrog Energy 44(24):12399–12408. https://doi.org/10.1016/j.ijhydene.2018.10.073

    Article  CAS  Google Scholar 

  • Rajvanshi S, Sharma MP (2012) Micro algae: a potential source of biodiesel. J Sustain Bioenergy Syst 02(03):49–59. https://doi.org/10.4236/jsbs.2012.23008

    Article  CAS  Google Scholar 

  • Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101(8):2616–2622. https://doi.org/10.1016/j.biortech.2009.10.061

    Article  CAS  Google Scholar 

  • Smith JE, Hunter CL, Smith CM (2002) Distribution and reproductive characteristics of nonindigenous and invasive marine algae in the Hawaiian islands. Pacific Sci 56(3):299–315. https://doi.org/10.1353/psc.2002.0030

    Article  Google Scholar 

  • Sviben S, Gal A, Hood MA et al (2016) A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms11228

    Article  CAS  Google Scholar 

  • Tran TN, Pham TVA, Le MLP, Nguyen TPT, Tran VM (2013) Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv Nat Sci Nanosci Nanotechnol 4(4). https://doi.org/10.1088/2043-6262/4/4/045007

  • Tumuluru JS, Hess JR, Boardman RD, Wright CT, Westover TL (2012) Formulation, pretreatment, and densification options to improve biomass specifications for Cofiring high percentages with coal. Ind Biotechnol 8(3):113–132. https://doi.org/10.1089/ind.2012.0004

    Article  CAS  Google Scholar 

  • USF.(2020) University of south Florid. https://optics.marine.usf.edu/. Consulted in March 2020

  • van Tussenbroek BI, Hernández Arana HA, Rodríguez-Martínez RE, Espinoza-Avalos J, Canizales-Flores HM, González-Godoy CE, Barba-Santos MG, Vega-Zepeda A, Collado-Vides L (2017) Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Marine Pollution Bulletin 122 (1–2):272–281

  • Veiga P, Torres AC, Besteiro C, Rubal M (2018) Mollusc assemblages associated with invasive and native Sargassum species. Cont Shelf Res 161(April):12–19. https://doi.org/10.1016/j.csr.2018.04.011

    Article  Google Scholar 

  • Vijayanand N, Ramya SS, Rathinavel S (2014) Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pacific J Reprod 3(2):150–155. https://doi.org/10.1016/S2305-0500(14)60019-1

    Article  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016

    Article  CAS  Google Scholar 

  • Wang M, Hu C, Barnes BB, Mitchum G, Lapointe B, Montoya JP (2019) The great Atlantic Sargassum belt. Science (80-). 364(6448):83–87. https://doi.org/10.1126/science.aaw7912

    Article  CAS  Google Scholar 

  • Winston JE et al. (1997) Encrusters, Epibionts, and Other Biota Associated with Pelagic Plastics: a Review of Biogeographical, Environmental, and Conservation Issues. Marine Debris 1. https://doi.org/10.1007/978-1-4613-8486-1_9

  • Wong K, Cheung PC (2001) Influence of drying treatment on three Sargassum species: proximate composition, amino acid profile and some physico-chemical properties. J Appl Phycol 13(1):43–50. https://doi.org/10.1023/A:1008149215156

    Article  CAS  Google Scholar 

  • Yang W, Liu Z, Xu W, Liu Y (2018) Removal of elemental mercury from flue gas using sargassum chars modified by NH 4 Br reagent. Fuel. 214(November 2017):196–206. https://doi.org/10.1016/j.fuel.2017.11.004

    Article  CAS  Google Scholar 

  • Zubia M, Payri CE, Deslandes E, Guezennec J (2003) Chemical composition of attached and drift specimens of Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales) from Tahiti. French Polynesia Bot Mar 46(6):562–571. https://doi.org/10.1515/BOT.2003.059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank and acknowledge L. de La Torre for his technical analysis. Thanks to K. Campos and E. Lestarjette for their help with SEM and XRD data acquisition, Nanotech National Laboratory and COLCIENCIAS (Administrative Department of Science, Technology and Innovation) Colombia. Thanks to Fabiola Paraguay-Ureta for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lardizábal-Gutierrez.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraguay-Delgado, F., Carreño-Gallardo, C., Estrada-Guel, I. et al. Pelagic Sargassum spp. capture CO2 and produce calcite. Environ Sci Pollut Res 27, 25794–25800 (2020). https://doi.org/10.1007/s11356-020-08969-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08969-w

Keywords

Navigation