Co-presence of the anionic surfactant sodium lauryl ether sulphate and the pesticide chlorpyrifos and effects on a natural soil microbial community

Abstract

There is a growing concern about the simultaneous presence in the environment of different kinds of pollutants, because of the possible synergic or additive effects of chemical mixtures on ecosystems. Chlorpyrifos (CPF) is an organophosphate insecticide extensively used in agricultural practices. The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of several commercial products, including foaming agents used in underground mechanised excavation. Both compounds are produced and sold in high amounts worldwide and can be found in the environment as soil contaminants. The persistence of SLES and CPF in agricultural soils and their possible effects on the natural microbial community was evaluated in microcosms. The experimental set consisted of soil samples containing the autochthonous microbial community and treated with only SLES (70 mg/kg), only CPF (2 mg/kg) or with a mix of both compounds. Control microcosms (without the contaminants) were also performed. Soil samples were collected over the experimental period (0, 7, 14, 21 and 28 days) and analysed for CPF, SLES and the main metabolite of CPF (3, 5, 6-trichloropyridinol, TCP). The half-life time (DT50) of each parent compound was estimated in all experimental conditions. At the same time, the abundance, activity and structure of the microbial community were also evaluated. The results showed that the co-presence of SLES and CPF did not substantially affect their persistence in soil (DT50 of 11 and 9 days with co-presence and 13 and 10 days, respectively, when alone); however, in the presence of SLES, a higher amount of the metabolite TCP was found. Interestingly, some differences were found in the bacterial community structure, abundance and activity among the various conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abraham J, Silambarasan S (2016) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pestic Biochem Physiol 126:13–21. https://doi.org/10.1016/j.pestbp.2015.07.001

    CAS  Article  Google Scholar 

  2. Ancona V, Barra Caracciolo A, Grenni P, di Lenola M, Campanale C, Calabrese A, Uricchio VF, Mascolo G, Massacci A (2017) Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in southern Italy. New Biotechnol 38:65–73. https://doi.org/10.1016/j.nbt.2016.09.006

    CAS  Article  Google Scholar 

  3. Barra Caracciolo A, Bustamante MA, Nogues I, di Lenola M, Luprano ML, Grenni P (2015) Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants. Geoderma 245–246:89–97. https://doi.org/10.1016/j.geoderma.2015.01.021

    CAS  Article  Google Scholar 

  4. Barra Caracciolo A, Cardoni M, Pescatore T, Patrolecco L (2017) Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling. Environ Pollut 226:94–103. https://doi.org/10.1016/j.envpol.2017.04.008

    CAS  Article  Google Scholar 

  5. Barra Caracciolo A, Ademollo N, Cardoni M, di Giulio A, Grenni P, Pescatore T, Rauseo J, Patrolecco L (2019) Assessment of biodegradation of the anionic surfactant sodium lauryl ether sulphate used in two foaming agents for mechanized tunnelling excavation. J Hazard Mater 365:538–545. https://doi.org/10.1016/j.jhazmat.2018.11.002

    CAS  Article  Google Scholar 

  6. Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Soil Res 41:749–760. https://doi.org/10.1071/SR02062

    CAS  Article  Google Scholar 

  7. Bellopede (2011) Main aspects of tunnel muck recycling. Am J Environ Sci 7:338–347. https://doi.org/10.3844/ajessp.2011.338.347

    Article  Google Scholar 

  8. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. https://doi.org/10.1007/s002489900082

    CAS  Article  Google Scholar 

  9. Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60. https://doi.org/10.1002/fes3.108

    Article  Google Scholar 

  10. Chai L-K, Wong M-H, Bruun Hansen HC (2013) Degradation of chlorpyrifos in humid tropical soils. J Environ Manag 125:28–32. https://doi.org/10.1016/j.jenvman.2013.04.005

    CAS  Article  Google Scholar 

  11. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manag 114:372–380. https://doi.org/10.1016/j.jenvman.2012.10.032

    CAS  Article  Google Scholar 

  12. Chu X, Fang H, Pan X et al (2008) Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. J Environ Sci 20:464–469. https://doi.org/10.1016/S1001-0742(08)62080-X

    CAS  Article  Google Scholar 

  13. Corada-Fernández C, Lara-Martín PA, Candela L, González-Mazo E (2011) Tracking sewage derived contamination in riverine settings by analysis of synthetic surfactants. J Environ Monit 13:2010–2017. https://doi.org/10.1039/c1em10150a

    CAS  Article  Google Scholar 

  14. Dar MA, Kaushik G, Villarreal-Chiu JF (2019) Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: a review. J Environ Manag 239:124–136. https://doi.org/10.1016/j.jenvman.2019.03.048

    CAS  Article  Google Scholar 

  15. Das S, Adhya TK (2015) Degradation of chlorpyrifos in tropical rice soils. J Environ Manag 152:36–42. https://doi.org/10.1016/j.jenvman.2015.01.025

    CAS  Article  Google Scholar 

  16. Di Lenola M, Barra Caracciolo A, Grenni P et al (2018) Effects of Apirolio addition and alfalfa and compost treatments on the natural microbial community of a historically PCB-contaminated soil. Water Air Soil Pollut 229:143. https://doi.org/10.1007/s11270-018-3803-4

    CAS  Article  Google Scholar 

  17. Dollinger J, Schacht VJ, Gaus C, Grant S (2018) Effect of surfactant application practices on the vertical transport potential of hydrophobic pesticides in agrosystems. Chemosphere 209:78–87. https://doi.org/10.1016/j.chemosphere.2018.06.078

    CAS  Article  Google Scholar 

  18. Fang H, Yu Y, Chu X et al (2009) Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21:380–386. https://doi.org/10.1016/S1001-0742(08)62280-9

    CAS  Article  Google Scholar 

  19. Fedeila M, Hachaïchi-Sadouk Z, Bautista LF, Simarro R, Nateche F (2018) Biodegradation of anionic surfactants by Alcaligenes faecalis, Enterobacter cloacae and Serratia marcescens strains isolated from industrial wastewater. Ecotoxicol Environ Saf 163:629–635. https://doi.org/10.1016/j.ecoenv.2018.07.123

    CAS  Article  Google Scholar 

  20. Ferrario C, Finizio A, Villa S (2017) Legacy and emerging contaminants in meltwater of three Alpine glaciers. Sci Total Environ 574:350–357. https://doi.org/10.1016/j.scitotenv.2016.09.067

    CAS  Article  Google Scholar 

  21. Gebremariam SY, Beutel MW, Yonge DR, et al (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. In: Reviews of Environmental Contamination and Toxicology. pp 123–175

  22. Gilani RA, Rafique M, Rehman A, Munis MFH, Rehman S, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56:105–119. https://doi.org/10.1002/jobm.201500336

    CAS  Article  Google Scholar 

  23. Grenni P, Caracciolo AB, Rodríguez-Cruz MS, Sánchez-Martín MJ (2009) Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Appl Soil Ecol 41:2–7. https://doi.org/10.1016/j.apsoil.2008.07.006

    Article  Google Scholar 

  24. Grenni P, Rodríguez-Cruz MS, Herrero-Hernández E, Marín-Benito JM, Sánchez-Martín MJ, Barra Caracciolo A (2012) Effects of wood amendments on the degradation of terbuthylazine and on soil microbial community activity in a clay loam soil. Water Air Soil Pollut 223:5401–5412. https://doi.org/10.1007/s11270-012-1289-z

    CAS  Article  Google Scholar 

  25. Grube A, Donaldson D, Timothy Kiely A, et al (2011) Pesticides industry sales and usage 2006 and 2007 market estimates. U.S. Environ. Prot. Agency https://www.epa.gov/sites/production/files/2015-10

  26. Guha S, Jaffé PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391. https://doi.org/10.1021/es950694p

    CAS  Article  Google Scholar 

  27. Haigh SD (1996) A review of the interaction of surfactants with organic contaminants in soil. Sci Total Environ 185:161–170. https://doi.org/10.1016/0048-9697(95)05049-3

    CAS  Article  Google Scholar 

  28. Hinojosa MB, Parra A, Laudicina VA, Moreno JM (2014) Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland. Biogeosci Discuss 11:15251–15287. https://doi.org/10.5194/bgd-11-15251-2014

    Article  Google Scholar 

  29. IUPAC (1999) Harmonised guidelines for the in-house validation of methods of analysis (technical report)

  30. John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/s10311-015-0513-7

    CAS  Article  Google Scholar 

  31. Koly F, Khan R (2019) Biodegradation of organophosphorous pesticide: chlorpyrifos. Guigoz Sci rev 8–18. Doi: https://doi.org/10.32861/sr.51.8.18

  32. Kumar U, Berliner J, Adak T, Rath PC, Dey A, Pokhare SS, Jambhulkar NN, Panneerselvam P, Kumar A, Mohapatra SD (2017) Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicol Environ Saf 135:225–235. https://doi.org/10.1016/j.ecoenv.2016.10.003

    CAS  Article  Google Scholar 

  33. Laha S, Tansel B, Ussawarujikulchai A (2009) Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manag 90:95–100. https://doi.org/10.1016/j.jenvman.2008.08.006

    CAS  Article  Google Scholar 

  34. Lara-Martín PA, Gómez-Parra A, González-Mazo E (2008) Sources, transport and reactivity of anionic and non-ionic surfactants in several aquatic ecosystems in SW Spain: a comparative study. Environ Pollut 156:36–45. https://doi.org/10.1016/j.envpol.2008.01.005

    CAS  Article  Google Scholar 

  35. Latifi AM (2012) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11:3140–3146. https://doi.org/10.5897/AJB11.2814

    CAS  Article  Google Scholar 

  36. Laudicina VA, Dennis PG, Palazzolo E, Badalucco L (2012) Key biochemical attributes to assess soil ecosystem sustainability. In: Environmental protection strategies for sustainable development. Springer Netherlands, Dordrecht, pp 193–227

    Google Scholar 

  37. Li R, He L, Zhou T, Ji X, Qian M, Zhou Y, Wang Q (2014) Simultaneous determination of chlorpyrifos and 3,5,6-trichloro-2-pyridinol in duck muscle by modified QuEChERS coupled to gas chromatography tandem mass spectrometry (GC-MS/MS). Anal Bioanal Chem 406:2899–2907. https://doi.org/10.1007/s00216-014-7717-8

    CAS  Article  Google Scholar 

  38. Maya K, Singh RS, Upadhyay SN, Dubey SK (2011) Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 46:2130–2136. https://doi.org/10.1016/j.procbio.2011.08.012

    CAS  Article  Google Scholar 

  39. Müller K, Magesan GN, Bolan NS (2007) A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric Ecosyst Environ 120:93–116. https://doi.org/10.1016/j.agee.2006.08.016

    CAS  Article  Google Scholar 

  40. Papadopoulou ES, Karas PA, Nikolaki S, Storck V, Ferrari F, Trevisan M, Tsiamis G, Martin-Laurent F, Karpouzas DG (2016) Dissipation and adsorption of isoproturon, tebuconazole, chlorpyrifos and their main transformation products under laboratory and field conditions. Sci Total Environ 569–570:86–96. https://doi.org/10.1016/j.scitotenv.2016.06.133

    CAS  Article  Google Scholar 

  41. Paulo AMS, Aydin R, Dimitrov MR, Vreeling H, Cavaleiro AJ, García-Encina PA, Stams AJM, Plugge CM (2017) Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl Microbiol Biotechnol 101:5163–5173. https://doi.org/10.1007/s00253-017-8212-x

    CAS  Article  Google Scholar 

  42. Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29. https://doi.org/10.1007/BF02286399

    Article  Google Scholar 

  43. Pinto MI, Burrows HD, Sontag G, Vale C, Noronha JP (2016) Priority pesticides in sediments of European coastal lagoons: a review. Mar Pollut Bull 112:6–16. https://doi.org/10.1016/j.marpolbul.2016.06.101

    CAS  Article  Google Scholar 

  44. PPDB:Pesticide Properties DataBase Accessed Apr 2019. https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm

  45. PubMed Accessed 16 Apr 2019. https://www.ncbi.nlm.nih.gov/pubmed/

  46. R Development Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. Available online at http://www.R-project.org/

  47. Racke KD (1993) Environmental fate of chlorpyrifos. Reviews of environmental contamination and toxicology, In, pp 1–150

    Google Scholar 

  48. Rauseo J, Barra Caracciolo A, Ademollo N, Cardoni M, di Lenola M, Gaze W, Stanton I, Grenni P, Pescatore T, Spataro F, Patrolecco L (2019) Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. J Hazard Mater 378:120769. https://doi.org/10.1016/j.jhazmat.2019.120769

    CAS  Article  Google Scholar 

  49. Roh J-Y, Choi J (2008) Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 71:483–489. https://doi.org/10.1016/j.ecoenv.2007.11.007

    CAS  Article  Google Scholar 

  50. Sharma SK, Ramesh A, Sharma MP, Joshi OP, Govaerts B, Steenwerth KL, Karlen DL (2010) Microbial community structure and diversity as indicators for evaluating soil quality. In: Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Dordrecht, pp 317–358

    Google Scholar 

  51. Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990. https://doi.org/10.3389/fpls.2016.00990

    Article  Google Scholar 

  52. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.041

    CAS  Article  Google Scholar 

  53. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129. https://doi.org/10.1007/s003740050533

    CAS  Article  Google Scholar 

  54. Zumsteg R, Langmaack L (2017) Mechanized tunneling in soft soils: choice of excavation mode and application of soil-conditioning additives in glacial deposits. Engineering 3:863–870. https://doi.org/10.1016/j.eng.2017.11.006

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luisa Patrolecco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Diane Purchase

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pescatore, T., Patrolecco, L., Rolando, L. et al. Co-presence of the anionic surfactant sodium lauryl ether sulphate and the pesticide chlorpyrifos and effects on a natural soil microbial community. Environ Sci Pollut Res 27, 30987–30997 (2020). https://doi.org/10.1007/s11356-020-08840-y

Download citation

Keywords

  • CUPs
  • SLES
  • Soil
  • Persistence
  • Multiple contamination
  • 3,5,6-Trichloropyridinol
  • Foaming agents