Skip to main content
Log in

Immobilization of horseradish peroxidase on Fe3O4 nanoparticles for enzymatic removal of endocrine disrupting chemicals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The modified Fe3O4 nanoparticles were used as a support for the immobilization of horseradish peroxidase (HRP). The immobilized enzyme (HRP@Fe3O4) was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FTIR), and vibration sample magnetometer (VSM). According to the results, the optimum concentration of glutaraldehyde (GA) and agitation time were 300 μL and 7 h. HRP was well loaded on the surface of the Fe3O4. There was no change in the crystal structure of HRP@Fe3O4 compared with Fe3O4. The removals of bisphenol A (BPA) and 17α-ethinylestradiol (EE2) using HRP@Fe3O4 had been investigated. The degradation efficiencies of BPA and EE2 catalyzed by HRP@Fe3O4 were higher than that of soluble HRP. In addition, HRP@Fe3O4 can be reused through magnetic separation. After the fifth repeated use, the removal efficiencies of BPA and EE2 were up to 56% and 48%, respectively. Batch studies of catalyzed oxidation and coagulation on the degradation of BPA and EE2 in the presence of humic acid (HA) were also investigated. The order of the removal efficiencies was HRP+PACl (polyaluminum chloride)+SDS (lauryl sodium sulfate)>HRP+PACl>HRP>HRP+PAM (Polyacrylamide)>HRP+PAM+SDS. The coagulation effect of HRP@Fe3O4 and PACl was better than that of HRP@Fe3O4 and PAM. The removals of BPA and EE2 were 90.3% and 64.5% by use HRP@Fe3O4 and PACl as coagulant, while the removals were 78.7% and 57.6% by use HRP@Fe3O4 and PAM as coagulant. SDS had a positive effect on PACl, while a negative effect on PAM. Moreover, the products generated by enzymatic oxidation reaction can be effectively removed after coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This research was supported by grants from the National Natural Science Foundation of China (Nos. 51578529, 51338010, 21507149) and the Fundamental Research Funds for the Central Universities (No. 2019MS033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xiao.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F., Xiao, P., Jiang, W. et al. Immobilization of horseradish peroxidase on Fe3O4 nanoparticles for enzymatic removal of endocrine disrupting chemicals. Environ Sci Pollut Res 27, 24357–24368 (2020). https://doi.org/10.1007/s11356-020-08824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08824-y

Keywords

Navigation