Skip to main content

Trace element concentrations in six fish species from freshwater lentic environments and evaluation of possible health risks according to international standards of consumption


Multi-element concentrations (Al, As, Cd, Cr, Hg, Ni, Pb, Se, and Sr) were analyzed in the muscle of six fish species (Hoplias malabaricus, Oligosarcus jenynsii, Rhamdia quelen, Bryconamericus iheringii, Astyanax fasciatus, and Odontesthes bonariensis) with different diets and habits from the Río Tercero Reservoir (RTR) in Córdoba, Argentina, during the wet and dry seasons. Besides, potential human health risks, associated with the consumption of these elements, have been assessed considering the average daily intake (EDI) in children and adults. Additionally, the target hazard quotient (THQ) and carcinogenic risk (CR) were evaluated taking into account the intake by the general population, fishermen, and consumption frequency recommended by the American Heart Association (AHA), the maximum scientific reference in cardiology in the USA and worldwide. All species presented quantifiable values in muscle for all the analyzed elements (Al, As, Cr, Hg, Ni, Se, and Sr), except for Cd and Pb, being Al and Sr the most accumulated elements in all species in both seasons. The consumption of edible muscles of the species studied in this reservoir represents a toxicological risk to humans. Mercury and As were the main elements that presented a health risk through the consumption of fish. Their concentrations in most fish species were above the maximum daily allowable concentrations, and THQ values were several times greater than 1. In addition, according to AHA recommendations, the cancer risk caused by As was greater than the acceptable value of 10−4 in all species studied, and in both seasons, with the exception of A. fasciatus, in the rainy season. These results indicate that the consumption of fish from the RTR exposes the inhabitants to possible health risks, especially when considering the consumption frequency recommended by the AHA. Therefore, fish intake from this reservoir should be limited to minimize potential risks to the health of consumers. Finally, the results of this study are useful for controlling pollution and developing preventive and palliative policies to protect populations in contact not only with the reservoir but also with other areas of the world with similar conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  • Bardch AE, Ciapponi A, Soto N et al (2015) Epidemiology of chronic disease related to arsenic in Argentina : a systematic review. SciTotal Environ 538:802–816.

    CAS  Article  Google Scholar 

  • Basim Y, Khoshnood Z (2013) Target hazard quotient evaluation of cadmium and lead in fish from Caspian Sea. Toxicol Ind Health 1–6.

  • Benson R, Conerly OD, Sander W, Batt AL, Boone JS, Furlong ET, Glassmeyer ST, Kolpin DW, Mash HE, Schenck KM, Simmons JE (2017) Human health screening and public health significance of contaminants of emerging concern detected in public water supplies. Sci Total Environ 579:1643–1648.

    CAS  Article  Google Scholar 

  • Bergés-Tiznado ME, Márquez-Farías JF, Torres-Rojas Y et al (2015) Mercury and selenium in tissues and stomach contents of the migratory sailfish, Istiophorus platypterus, from the Eastern Pacific: concentration, biomagnification, and dietary intake. Mar Pollut Bull 101:349–358.

    CAS  Article  Google Scholar 

  • Bertolotti MI, Errazti E, Pagani AN (1996) La comercialización de productos pesqueros. Promoción del consumo de pescado en el mercado interno. FACES 2:7–25 ISSN 0328-4050

    Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017.

    CAS  Article  Google Scholar 

  • Bundschuh A, Pérez Carrera M, Litter MI (2008) Distribución del arsénico en la región Ibérica e Iberoamericana. Desarrollo EPIdCyTpe, Litter

  • Cappon C, Smith J (1982) Chemical form and distribution of mercury and selenium in edible seafood. J Anal Toxicol 6:10–21.

    CAS  Article  Google Scholar 

  • Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88:78–83.

    CAS  Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, et al (2013) InfoStat versión, 2013. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina

  • Dipas and UNC (2007) Estudio de contaminación del Río Tercero (Ctalamochita) y control de vertidos. Primer Informe

  • Fallah AA, Saei-dehkordi SS, Nematollahi A, Jafari T (2011) Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem J 98:275–279.

    CAS  Article  Google Scholar 

  • FAO. Food and Agriculture Organization of the United Nations. (2018)

  • Garnero PL, Monferran MV, González GA, Griboff J, de Los Ángeles BM (2018) Assessment of exposure to metals, As and Se in water and sediment of a freshwater reservoir and their bioaccumulation in fish species of different feeding and habitat preferences. Ecotoxicol Environ Saf 163:492–501.

    CAS  Article  Google Scholar 

  • Graeme KA, Pollack CV (1998) Heavy metal toxicity, part I: arsenic and mercury. J Emerg Med 16:45–56

    CAS  Article  Google Scholar 

  • Griboff J, Wunderlin DA, Monferran MV (2017) Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem J 130:236–244.

    CAS  Article  Google Scholar 

  • Hallenbeck WH (1993) Quantitative risk assessment for environmental and occupational health

  • Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16.

    CAS  Article  Google Scholar 

  • Haro JG, Bistoni MA (2007) “Peces de Córdoba” 1a ed. Ed. Universidad Nacional de Córdoba. 178-183

  • Heshmati A, Karami-Momtaz J, Nili-Ahmadabadi A, Ghadimi S (2017) Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran. Chemosphere 173:207–215

    CAS  Article  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1993) IARC monographs on the evaluation of carcinogenic risks to humans. Vol 58. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry

  • Jabeen F, Chaudhry A (2010) Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan. Environ Monit Assess 166:641–651.

    CAS  Article  Google Scholar 

  • Jinadasa BKKK, Fowler SW (2019) Critical review of mercury contamination in Sri Lankan fish and aquatic products. Mar Pollut Bull 149:110526.

    CAS  Article  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757.

    Article  Google Scholar 

  • Mancini M, Grosman F (1998) Aspectos poblacionales del pejerrey Odontesthes bonariensis en el Embalse Río Tercero, Córdoba. Natura Neotropicalis 29:137–143

    Google Scholar 

  • Mariazzi AA, Donadelli JL, Arenas P et al (1992) Impact of a nuclear power plant on water quality of Embalse del Rio Tercero Reservoir, (Cordoba, Argentina). Hydrobiologia 246:129–140

    CAS  Article  Google Scholar 

  • Mariñelarena A, Donadelli J, Hechem M (2014) Cambios en las características limnológicas del Embalse Río Tercero por efecto de la invasión de Limnosperma fortunei (Bivalvia: Mytilidae). Biología Acuática 30:151–158

    Google Scholar 

  • Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen AL, Sunderland EM (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117.

    CAS  Article  Google Scholar 

  • Moallem SA, Karimi G, Khayyat MH et al (2010) Exposure assessment for mercury from consumption of marine fish in Iran. Toxicol Environ Chem 92:1213–1218.

    CAS  Article  Google Scholar 

  • Monferran MV, Garnero PL, Wunderlin DA, de la Bistoni M (2016) Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake. Ecotoxicol Environ Saf 129:302–310.

    CAS  Article  Google Scholar 

  • Moreno-Sánchez R, Díaz-Barriga F, Devars S (1999) Mecanismos de toxicidad y tolerancia a los metales pesados. Contaminación ambiental por metales pesados. Impacto en los seres vivos

  • MyTran TA, Leermakers M, Long T, et al (2018) Metals and arsenic in sediment and fi sh from Cau Hai lagoon in Vietnam : Ecological and human health risks. Chemosphere 210:175–182.

  • Nawab J, Khan S, Xiaoping W (2018) Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan : general population vs. fishermen. Chemosphere 202:154–164.

    CAS  Article  Google Scholar 


  • Sevillano-Morales JS, Cejudo-Gómez M, Ramírez-Ojeda AM et al (2015) Risk profile of methylmercury in seafood. Curr Opin Food Sci 6:53–60.

    Article  Google Scholar 

  • Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64.

    CAS  Article  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1989). Risk assessment guidance for superfund. In: Human Health Evaluation Manual Part A, Interim Final, vol. I. United States Environmental Protection Agency. Washington DC. EPA/540/1–89/ 002

  • USEPA (US Environmental Protection Agency) (1991). Technical Support Document For Water Quality-based Toxics Control. Washington DC. EPA/505/2–90-001

  • USEPA (US Environmental Protection Agency) (2000). Risk-based concentration table. United States Environmental Protection Agency. Philadelphia PA, Washington DC

  • USEPA (US Environmental Protection Agency) (2010). Risk-based concentration table. Disponible online:

  • USEPA (US Environmental Protection Agency)(2017). Human health risk assessment. Regional Screening Level (RSL) Summary Table. Disponible online:

  • Wang X, Wang WX (2019) The three “B” of fish mercury in China: bioaccumulation, biodynamics and biotransformation. Environ Pollut 250:216–232.

    CAS  Article  Google Scholar 

  • Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585.

    CAS  Article  Google Scholar 

  • Yi Y, Tang C, Yi T, Yang Z, Zhang S (2017) Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol Environ Saf 145:295–302.

    CAS  Article  Google Scholar 

  • Yun-Ru J, Chen CW, Chen CF et al (2017) Assessment of heavy metals in aquaculture fishes collected from southwest coast of Taiwan and human consumption risk. Int Biodeterior Biodegrad 124:314–325.

    CAS  Article  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561.

    CAS  Article  Google Scholar 

Download references


The authors thank the National Scientific and Technical Research Council (CONICET, PIP 112-201101-01084) 461 and the Science and Technology Office (SECYT, 2014–2015. Res no. 203/14) of the National University of Córdoba (Argentina) for grants and subsidies. We also thank Joaquín Gastaminza for his help during sample measurement with the ICP-MS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Magdalena V. Monferran.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garnero, P.L., Bistoni, M.d. & Monferran, M.V. Trace element concentrations in six fish species from freshwater lentic environments and evaluation of possible health risks according to international standards of consumption. Environ Sci Pollut Res 27, 27598–27608 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Multi-element
  • Rio Tercero Reservoir
  • Ichthyofauna
  • Accumulation
  • Health risk