Skip to main content
Log in

A new method for evaluating the effects of insecticidal proteins expressed by transgenic plants on ectoparasitoid of target pest

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Transgenic Bt insect-resistant plants are highly resistant to Lepidoptera stockpile pest Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), a storage pest. Habrobracon hebetor (Say) (Hymenoptera: Braconidae), which is an ectoparasitic wasp of Indian meal moth, may be exposed to the Bt protein through the food chain. In the current study, high dose of Cry1C protein was injected into the hemolymph of P. interpunctella by microinjection, and the hemolymph was used as the carrier to deliver Bt protein to the H. hebetor. Using this method, we developed a new Tier-1 risk assessment system for ectoparasitoid, successfully avoided “host/prey quality-mediated effect,” and improve the accuracy of safety evaluation. Results showed that injected Cry1C was stable and bioactive in the hemolymph of P. interpunctella parasitized by H. hebetor, and high dose of Cry1C has no negative impacts on egg hatching rate, developmental duration from egg to adult, survival egg to adult, pupa weight, adults weight (male and female), adult longevity and reproduction, and activity of stress-related enzymes of H. hebetor. However, the hemolymph of P. interpunctella injected into Galanthus nivalis L. agglutinin (the positive control) had significant negative impact on these biological parameters of H. hebetor. The results indicate that H. hebetor are not sensitive to Cry1C protein at the tested concentration and there were no detrimental effects of Cry1C protein on any biological parameters tested in the present study. More importantly, we constructed a new efficient and simple system for the biosafety assessment on the larvae of ectoparasitoid of target pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In: Dhadialla TS, Gill S (eds) Insect Midgut and insecticidal proteins. Academic Press, London, pp 39–87

    Google Scholar 

  • Akinkurolere RO, Zhang HY, Rao Q (2007) Response of Plodia interpunctella to treatments with different strains of Bacillus thuringiensis (Lepidoptera: Pyralidae). Entomol Gen 30:263–271

    Google Scholar 

  • Baker GJ, Kovaliski J (1999) Detection of insecticide resistance in Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in south Australian crucifer crops. Aust J Entomol 38:132–134

    Google Scholar 

  • Barraclough EI, Burgess EPJ, Philip BA, Wohlers MW, Malone LA (2009) Tritrophic impacts of Bt-expressing transgenic pine on the parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) via its host Pseudocoremia suavis (Lepidoptera: Geometridae). Biol Control 49:192–199

    Google Scholar 

  • Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26:325–332

    CAS  Google Scholar 

  • Chen H, Tang W, Xu CG, Li XH, Lin YJ, Zhang QF (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111:1330–1337

    CAS  Google Scholar 

  • Chen M, Zhao JZ, Collins HL, Earle ED, Cao J, Shelton AM (2008) A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One 3:e2284

    Google Scholar 

  • Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    CAS  Google Scholar 

  • Cheng XY, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci U S A 95:2767–2772

    CAS  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Google Scholar 

  • Eliopoulos PA, Stathas GJ (2008) Life tables of Habrobracon hebetor (Hymenoptera: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae): effect of host density. J Econ Entomol 101:982–988

    CAS  Google Scholar 

  • Feng CJ, Qiu HG, Qiu ZL, Fu WJ (2004) Effects of parasitism by Macrocentrus cingulum Brischke (Hymenoptera:Braconidae) on the activity of phenoloxidase in larvae of the Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera:Pyralidae). Acta Entomol Sin 47:298–304

    CAS  Google Scholar 

  • Han Y, Chen J, Wang H, Zhao J, He YP, Hua HX (2015) Prey-mediated effects of transgenic cry2Aa rice on the spider Hylyphantes graminicola, a generalist predator of Nilapavarta lugens. BioControl 60:251–261

    CAS  Google Scholar 

  • Hasan MM, Yeasmin L, Athanassiou CG, Bari MA, Islam MS (2019) Using gamma irradiated Galleria mellonella L. and Plodia interpunctella (Hubner) larvae to optimize mass rearing of parasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Insects 10:2238

    Google Scholar 

  • Huang XF (1990) A preliminary study on biology of Habrobracon hebetor. Nat Enemies Insects 12:85–89 (in Chinese)

    Google Scholar 

  • Huang JK, Hu RF, Qiao FB, Yin YH, Liu HJ, Huang ZR (2015) Impact of insect-resistant GM rice on pesticide use and farmers’ health in China. Sci China Life Sci 58:466–471

    Google Scholar 

  • Jian FM (1993) A preliminary study on biology of India meal moth. Southwest China Journal of Agricultural Sciences 6:80–84 (in Chinese)

  • Jiang HY, Wang ZH, Hua HX, Gao GL, Cai WL, Yang CJ (2011) Effects of transgenic Bt (Cry1Ab/Cry1Ac) rice on the population development of Plodia interpunctella. Chin J Appl Entomol 48:1722–1727 (in Chinese)

    CAS  Google Scholar 

  • Kabore A, Ba NM, Dabire-Binso CL, Sanon A (2017) Field persistence of Habrobracon hebetor (say) (Hymenoptera: Braconidae) following augmentative releases against the millet head miner, Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae), in the Sahel. Biol Control 108:64–69

    Google Scholar 

  • Kryukova NA, Dubovskiy IM, Chertkova EA, Vorontsova YL, Slepneva IA, Glupov VV (2011) The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. J Insect Physiol 57:796–800

    CAS  Google Scholar 

  • Li JJ, Shao YY, Qian HT, Dong H, Cong B, Zhang HY (2007) Biological characteristics of Habrobracon hebetor Say parasitoid in three pyralid hosts. J Anhui Agric Sci 35:7525–7526 (in Chinese)

    Google Scholar 

  • Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2016) The development and status of Bt rice in China. Plant Biotechnol J 14:839–848

    Google Scholar 

  • Lou YG, Zhang GR, Zhang WQ, Hu Y, Zhang J (2013) Biological control of rice insect pests in China. Biol Control 67:8–20

    Google Scholar 

  • Matteson PC (2000) Insect pest management in tropical Asian irrigated rice. Annu Rev Entomol 45:549–574

    CAS  Google Scholar 

  • Mohandass S, Arthur FH, Zhu KY, Throne JE (2007) Biology and management of Plodia interpunctella (Lepidoptera : Pyralidae) in stored products. J Stored Prod Res 43:302–311

    Google Scholar 

  • Moniyaz I, Ahtam U, Umar N, Ahmat A, Tursun A (2007) Influence of Habrobracon hebetor on Helicoverpa armigera in southern Xinjiang. Natural Enemies Insects 29:12–15

  • Oluwafemi AR, Rao Q, Wang XQ, Zhang HY (2009) Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Sci 16:409–416

    Google Scholar 

  • Pezzini C, Jahnke SM, Kohler A (2017) Morphological characterization of immature stages of Habrobracon hebetor (Hymenoptera, Braconidae) ectoparasitoid of Ephestia kuehniella (Lepidoptera, Pyralidae). J Hymenopt Res 60:157–171

    Google Scholar 

  • Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delegue MH (2008) Does CrylAb protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Saf 70:327–333

    CAS  Google Scholar 

  • Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    CAS  Google Scholar 

  • Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183

    CAS  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MM, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    CAS  Google Scholar 

  • Romeis J, Hellmich RL, Candolfi MP, Carstens K, de Schrijver A, Gatehouse AM, Herman RA, Huesing JE, McLean M, Raybould A, Shelton AM, Waggoner A (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    CAS  Google Scholar 

  • Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–909

    CAS  Google Scholar 

  • Schuler TH, Denholm I, Clark SJ, Stewart CN, Poppy GM (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Physiol 50:435–443

    CAS  Google Scholar 

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2014) Deleterious effects of Bacillus thuringiensison biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59:89–98

    Google Scholar 

  • Stejskal V, Kosina P, Kanyomeka L (2006) Arthropod pests and their natural enemies in stored crops in northern Namibia. J Pest Sci 79:51–55

    Google Scholar 

  • Tang W, Chen H, Xu C, Li XH, Lin YJ, Zhang QF (2006) Development of insect-resistant transgenic indica rice with a synthetic, cry1C* gene. Mol Breed 18:1–10

    CAS  Google Scholar 

  • Tian JC, Wang XP, Long LP, Romeis J, Naranjo SE, Hellmich RL (2014) Eliminating host-mediated effects demonstrates bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris. Transgenic Res 23:257–264

    CAS  Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101

    CAS  Google Scholar 

  • Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res 14:133

    CAS  Google Scholar 

  • Wang YY, Li YH, Huang ZY, Chen XP, Romeis J, Dai PL, Peng YF (2015) Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee, Apis mellifera. J Agric Food Chem 63:6126–6132

    CAS  Google Scholar 

  • Wang ZX, Li YH, He KL, Bai SX, Zhang TT, Cai WZ, Wang ZY (2017) Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum (Hymenoptera: Braconidae)? Insect Sci 24:599–612

    CAS  Google Scholar 

  • Xu X, Han Y, Wu G, Cai W, Yuan B, Wang H, Liu F, Wang M, Hua H (2011) Field evaluation of effects of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on Cnaphalocrocis medinalis and its arthropod predators. Sci China Life Sci 54:1019–1028

    CAS  Google Scholar 

  • Yang Y, Liu Y, Cao FQ, Chen XP, Cheng LS, Romeis J, Li YH, Peng YF (2014) Consumption of Bt rice pollen containing Cry1C or Cry2A protein poses a low to negligible risk to the silkworm Bombyx mori (Lepidoptera: Bombyxidae). PLoS One 9:e102302

    Google Scholar 

  • Ye R, Huang H, Yang Z, Chen T, Liu L, Li X, Chen H, Lin Y (2009) Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Manag Sci 65:1015–1020

    CAS  Google Scholar 

  • Zhuo Z, Yang W, Qin H, Yang CP, Yang H, Xu DP (2013) Isolation and purification of the venom proteins in Sclerodermus sichuanensis. Sci Silvae Sin 49:106–112

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Genetically Modified Organisms Breeding Major Project: Technology of Environmental Risk Assessment on Transgenic Rice (2016ZX08011001-002) and the Fundamental Research Funds for the Central Universities (2662015PY115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Hua.

Additional information

Responsible editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 31 kb).

ESM 2

(DOC 122 kb).

ESM 3

(DOC 130 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Cai, W., Wang, Z. et al. A new method for evaluating the effects of insecticidal proteins expressed by transgenic plants on ectoparasitoid of target pest. Environ Sci Pollut Res 27, 29983–29992 (2020). https://doi.org/10.1007/s11356-020-08664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08664-w

Keywords

Navigation