Particulate inorganic salts and trace element emissions of a domestic boiler fed with five commercial brands of wood pellets

Abstract

Pellet stoves arouse a real interest from consumers because they are perceived as a renewable and carbon neutral energy. However, wood combustion can contribute significantly to air pollution, in particular through the emission of particulate matter (PM). In this article, five brands of wood pellets were burnt under optimal combustion conditions and trace element and inorganic salt emission factors (EFs) in PM were determined. Results show that a significant proportion of metals such as lead, zinc, cadmium, and copper initially present in pellets were emitted into the air during combustion with 20 ± 6%, 31 ± 12%, and 19 ± 6% of the initial content respectively for Zn, Pb, and Cd. The median emission factors for Pb, Cu, Cd, As, Zn, and Ni were respectively 188, 86, 9.3, 8.7, 2177, and 3.5 μg kg−1. The inorganic fraction of the PM emissions was dominated by K+, SO42−, and Cl with respective EFs of 33, 28.7, and 11.2 mg kg−1. Even taking into account a consumption of 40.1 million tons by 2030 in the EU, the resulting pollution in terms of heavy metal emissions remains minimal in comparison with global emissions in the EU.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arranz JI, Miranda MT, Montero I, Sepúlveda FJ, Rojas CV (2015) Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel 142:199–207. https://doi.org/10.1016/j.fuel.2014.10.059

    CAS  Article  Google Scholar 

  2. Avagyan R, Nyström R, Lindgren R, Boman C, Westerholm R (2016) Particulate hydroxy-PAH emissions from a residential wood log stove using different fuels and burning conditions. Atmos Environ 140:1–9. https://doi.org/10.1016/j.atmosenv.2016.05.041

    CAS  Article  Google Scholar 

  3. Avakian MD et al (2002) The origin, fate, and health effects of combustion by-products: a research framework. Environ Health Perspect 110:1155–1162. https://doi.org/10.1289/ehp.021101155

    Article  Google Scholar 

  4. Baxter XC, Darvell LI, Jones JM, Barraclough T, Yates NE, Shield I (2012) Study of Miscanthus x giganteus ash composition – variation with agronomy and assessment method. Fuel 95:50–62. https://doi.org/10.1016/j.fuel.2011.12.025

    CAS  Article  Google Scholar 

  5. Bølling AK et al (2012) Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 9:45–45. https://doi.org/10.1186/1743-8977-9-45

    CAS  Article  Google Scholar 

  6. Boman C, Nordin A, Boström D, Öhman M (2004) Characterization of inorganic particulate matter from residential combustion of pelletized biomass fuels. Energy Fuel 18:338–348. https://doi.org/10.1021/ef034028i

    CAS  Article  Google Scholar 

  7. Boman C, Öhman M, Nordin A (2006) Trace element enrichment and behavior in wood pellet production and combustion processes. Energy Fuel 20:993–1000. https://doi.org/10.1021/ef050375b

    CAS  Article  Google Scholar 

  8. Boman C, Pettersson E, Westerholm R, Boström D, Nordin A (2011) Stove performance and emission characteristics in residential wood log and pellet combustion, part 1: Pellet Stoves. Energy Fuel 25:307–314. https://doi.org/10.1021/ef100774x

    CAS  Article  Google Scholar 

  9. Chandrasekaran SR, Hopke PK, Rector L, Allen G, Lin L (2012) Chemical composition of wood chips and wood pellets. Energy Fuel 26:4932–4937. https://doi.org/10.1021/ef300884k

    CAS  Article  Google Scholar 

  10. Chow J, Watson J (1999) Ion chromatography in elemental analysis of airborne particles. In: S. Landsberger MC (ed) Elemental analysis of airborne particles, vol 1. Gordon and Breach Science, pp 97–137

  11. Czech H et al (2018) Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances. Sci Total Environ 612:636–648. https://doi.org/10.1016/j.scitotenv.2017.08.263

    CAS  Article  Google Scholar 

  12. Danielsen PH, Loft S, Kocbach A, Schwarze PE, Møller P (2009) Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines. Mutat Res Genet Toxicol Environ Mutagen 674:116–122. https://doi.org/10.1016/j.mrgentox.2008.10.014

    CAS  Article  Google Scholar 

  13. Dhammapala R, Claiborn C, Simpson C, Jimenez J (2007) Emission factors from wheat and Kentucky bluegrass stubble burning: comparison of field and simulated burn experiments. Atmos Environ 41:1512–1520. https://doi.org/10.1016/j.atmosenv.2006.10.008

    CAS  Article  Google Scholar 

  14. Dilger M, Orasche J, Zimmermann R, Paur H-R, Diabaté S, Weiss C (2016) Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol 90:3029–3044. https://doi.org/10.1007/s00204-016-1659-1

    CAS  Article  Google Scholar 

  15. EEA (2019) National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention). https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-convention-on-long-range-transboundary-air-pollution-lrtap-convention-13. Accessed 13 March 2020

  16. Fachinger F, Drewnick F, Gieré R, Borrmann S (2017) How the user can influence particulate emissions from residential wood and pellet stoves: emission factors for different fuels and burning conditions. Atmos Environ 158:216–226. https://doi.org/10.1016/j.atmosenv.2017.03.027

    CAS  Article  Google Scholar 

  17. Fernandez A, Davis SB, Wendt JOL, Cenni R, Young RS, Witten ML (2001) Particulate emission from biomass combustion. Nature 409:998–998. https://doi.org/10.1038/35059169

    CAS  Article  Google Scholar 

  18. Fine PM, Cass GR, Simoneit BRT (2001) Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ Sci Technol 35:2665–2675. https://doi.org/10.1021/es001466k

    CAS  Article  Google Scholar 

  19. Happo MS et al (2013) Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. Sci Total Environ 443:256–266. https://doi.org/10.1016/j.scitotenv.2012.11.004

    CAS  Article  Google Scholar 

  20. Ho TC, Chu HW, Hopper JR (1993) Metal volatilization and separation during incineration. Waste Manag 13:455–466. https://doi.org/10.1016/0956-053X(93)90077-A

    CAS  Article  Google Scholar 

  21. International Organization for Standardization G, Switzerland (2014) ISO 17225-2:2014 Solid biofuels - fuel specifications and classes - Part 2: Graded wood pellets

  22. Jonsson R, Rinaldi F (2017) The impact on global wood-product markets of increasing consumption of wood pellets within the European Union. Energy 133:864–878. https://doi.org/10.1016/j.energy.2017.05.178

    Article  Google Scholar 

  23. Kasurinen S, Happo MS, Rönkkö TJ, Orasche J, Jokiniemi J, Kortelainen M, Tissari J, Zimmermann R, Hirvonen MR, Jalava PI (2018) Differences between co-cultures and monocultures in testing the toxicity of particulate matter derived from log wood and pellet combustion. PLoS One 13:e0192453. https://doi.org/10.1371/journal.pone.0192453

    CAS  Article  Google Scholar 

  24. Klippel N, Nussbaumer T (2007) Health relevance of particles from wood combustion in comparison to diesel soot. In: 15th European Biomass Conference and Exhibition, Berlin, 7–11 May 2007

  25. Kocbach Bølling A, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C (2009) Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6:29. https://doi.org/10.1186/1743-8977-6-29

    CAS  Article  Google Scholar 

  26. Lai A, Shan M, Deng M, Carter E, Yang X, Baumgartner J, Schauer J (2019) Differences in chemical composition of PM2.5 emissions from traditional versus advanced combustion (semi-gasifier) solid fuel stoves. Chemosphere 233:852–861. https://doi.org/10.1016/j.chemosphere.2019.06.013

    CAS  Article  Google Scholar 

  27. Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manage Assoc 50:1565–1618. https://doi.org/10.1080/10473289.2000.10464197

    CAS  Article  Google Scholar 

  28. Lind T, Kauppinen EI, Hokkinen J, Jokiniemi JK, Orjala M, Aurela M, Hillamo R (2006) Effect of chlorine and sulfur on fine particle formation in pilot-scale CFBC of biomass. Energy Fuel 20:61–68. https://doi.org/10.1021/ef050122i

    CAS  Article  Google Scholar 

  29. Miller B, Dugwell DR, Kandiyoti R (2003) The influence of injected HCl and SO2 on the behavior of trace elements during wood-bark combustion. Energy Fuel 17:1382–1391. https://doi.org/10.1021/ef030020x

    CAS  Article  Google Scholar 

  30. Nyström R, Lindgren R, Avagyan R, Westerholm R, Lundstedt S, Boman C (2017) Influence of wood species and burning conditions on particle emission characteristics in a residential wood stove. Energy Fuel 31:5514–5524. https://doi.org/10.1021/acs.energyfuels.6b02751

    CAS  Article  Google Scholar 

  31. Orecchio S, Amorello D, Barreca S (2016) II) wood pellets for home heating can be considered environmentally friendly fuels? Heavy metals determination by inductively coupled plasma-optical emission spectrometry (ICP-OES) in their ashes and the health risk assessment for the operators Microchem J 127:178–183 https://doi.org/10.1016/j.microc.2016.03.008

  32. Paulrud S, Gustafsson T (2010) Emission factors and emissions from residential biomass combustion in Sweden. SMHI, Norrköping

    Google Scholar 

  33. Roden CA, Bond TC, Conway S, Pinel ABO (2006) Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ Sci Technol 40:6750–6757. https://doi.org/10.1021/es052080i

    CAS  Article  Google Scholar 

  34. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C1−C29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35:1716–1728. https://doi.org/10.1021/es001331e

    CAS  Article  Google Scholar 

  35. Schmidl C et al (2011) Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos Environ 45:7443–7454. https://doi.org/10.1016/j.atmosenv.2011.05.006

    CAS  Article  Google Scholar 

  36. Shen G et al (2012) Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmos Environ 60:234–237. https://doi.org/10.1016/j.atmosenv.2012.06.067

    CAS  Article  Google Scholar 

  37. Shen G et al (2013) Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions. J Environ Sci 25:2072–2080. https://doi.org/10.1016/S1001-0742(12)60249-6

    CAS  Article  Google Scholar 

  38. Sippula O, Hytönen K, Tissari J, Raunemaa T, Jokiniemi J (2007) Effect of wood fuel on the emissions from a top-feed pellet stove. Energy Fuel 21:1151–1160. https://doi.org/10.1021/ef060286e

    CAS  Article  Google Scholar 

  39. Torvela T, Uski O, Karhunen T, Lähde A, Jalava P, Sippula O, Tissari J, Hirvonen MR, Jokiniemi J (2014) Reference particles for toxicological studies of wood combustion: formation, characteristics, and toxicity compared to those of real wood combustion particulate mass. Chem Res Toxicol 27:1516–1527. https://doi.org/10.1021/tx500142f

    CAS  Article  Google Scholar 

  40. Toscano G, Duca D, Amato A, Pizzi A (2014) Emission from realistic utilization of wood pellet stove. Energy 68:644–650. https://doi.org/10.1016/j.energy.2014.01.108

    CAS  Article  Google Scholar 

  41. Uski OJ et al (2012) Acute systemic and lung inflammation in C57Bl/6J mice after intratracheal aspiration of particulate matter from small-scale biomass combustion appliances based on old and modern technologies. Inhal Toxicol 24:952–965. https://doi.org/10.3109/08958378.2012.742172

    CAS  Article  Google Scholar 

  42. Uski O et al (2015) Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. Sci Total Environ 511:331–340. https://doi.org/10.1016/j.scitotenv.2014.12.061

    CAS  Article  Google Scholar 

  43. Wang K-S, Chiang K-Y, Tsai C-C, Sun C-J, Tsai C-C, Lin K-L (2001) The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ Int 26:257–263. https://doi.org/10.1016/S0160-4120(00)00115-X

    Article  Google Scholar 

  44. Ward T, Lange T (2010) The impact of wood smoke on ambient PM2.5 in northern Rocky Mountain valley communities. Environ Pollut 158:723–729. https://doi.org/10.1016/j.envpol.2009.10.016

    CAS  Article  Google Scholar 

  45. Zhang J et al (2000) Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos Environ 34:4537–4549. https://doi.org/10.1016/S1352-2310(99)00450-1

    CAS  Article  Google Scholar 

  46. Zhang W, Tong Y, Wang H, Chen L, Ou L, Wang X, Liu G, Zhu Y (2014) Emission of metals from pelletized and uncompressed biomass fuels combustion in rural household stoves in China. Sci Rep 4:5611. https://doi.org/10.1038/srep05611

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Fabien BOUST and Wendy SY for technical assistance. The authors are grateful to Barry Holmes for his linguistic support.

Funding

This work was supported by Normandy Region (France), LABEX SYNORG, and the European Regional Development Funds (ERDF).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Stéphane Marcotte or Nadine Merlet-Machour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcotte, S., Castilla, C., Morin, C. et al. Particulate inorganic salts and trace element emissions of a domestic boiler fed with five commercial brands of wood pellets. Environ Sci Pollut Res 27, 18221–18231 (2020). https://doi.org/10.1007/s11356-020-08329-8

Download citation

Keywords

  • Domestic stoves
  • Pellets
  • Particle matter
  • Trace elements
  • Emission factors