Abstract
Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.

References
Air Quality Index (2018) World air quality index. IQAir Air Visual. https://www.airvisual.com/world-most-polluted-cities/world-air-quality-report-2018-en.pdf
Amini H, Hosseini V, Schindler C, Hassankhany H, Yunesian M, Henderson SB, Künzli N (2017a) Spatiotemporal description of BTEX volatile organic compounds in a middle eastern megacity: Tehran study of exposure prediction for environmental health research (Tehran SEPEHR). Environ Pollut 226:219–229
Amini H, Yunesian M, Hosseini V, Schindler C, Henderson SB, Künzli N (2017b) A systematic review of land use regression models for volatile organic compounds. Atmos Environ 171:1–16
Anderson JL (2001) An ensemble adjustment kalman filter for data assimilation. Mon Weather Rev 129 (12):2884–2903
Anderson JL (2012) Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon Weather Rev 140(7):2359–2371
Anderson JL (2019) A nonlinear rank regression method for ensemble kalman filter data assimilation. Mon Weather Rev 147(8):2847–2860
Andersson C, Langner J, Bergstrom R (2007) Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus 59(3):77–98
Andrade F, Orsini C, Maenhaut W (1994) Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil. Atmos Environ 28(14):2307–2315
Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8(16):4605–4620
Bandowe BAM, Frnkl L, Grosjean M, Tylmann W, Mosquera PV, Hampel H, Schneider T (2018) A 150-year record of polycyclic aromatic compound (PAC) deposition from high Andean Cajas National Park, southern Ecuador. Science of the Total Environment 621:1652–1663. https://doi.org/10.1016/j.scitotenv.2017.10.060
Bastidas M, Quintero O.L., Garcia J (2014) nteligencia De Mercados: Comportamientos Estratgicos Sobre Precios De Oferta En El Mercado Spot Elctrico Colombiano //(Market Intelligence: Strategic Behaviors with Prices in the Colombian Electricity Spot). Documentos de Economia y Fiannzas 16:1. https://doi.org/10.2139/ssrn.2393225
Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, Tsai MY, Künzli N, Schikowski T, Marcon A, Eriksen KT, Raaschou-Nielsen O, Stephanou E, Patelarou E, Lanki T, Yli-Tuomi T, Declercq C, Falq G, Stempfelet M, Birk M, Cyrys J, von Klot S, Nȧdor G, Varró MJ, Dedele A, Gražulevičiene R, Mȯlter A, Lindley S, Madsen C, Cesaroni G, Ranzi A, Badaloni C, Hoffmann B, Nonnemacher M, Krȧmer U, Kuhlbusch T, Cirach M, de Nazelle A, Nieuwenhuijsen M, Bellander T, Korek M, Olsson D, Strȯmgren M, Dons E, Jerrett M, Fischer P, Wang M, Brunekreef B, de Hoogh K (2013) Development of NO 2 and NO x land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project. Atmos Environ 72(2):10–23
Beltman JB, Hendriks C, Tum M, Schaap M (2013) The impact of large scale biomass production on ozone air pollution in Europe. Atmos Environ 71:352–363
Bianchi F, Barmet P, Stirnweis L, El Haddad I, Platt S M, Saurer M, Lötscher C, Siegwolf R, Bigi A, Hoyle C R, DeCarlo P F, Slowik J G, Prévôt A S H, Baltensperger U, Dommen J (2016) Contribution of methane to aerosol carbon mass. Atmospheric Environment 141:41–47. https://doi.org/10.1016/j.atmosenv.2016.06.036
Bickel PJ, Levina E, et al. (2008a) Covariance regularization by thresholding. Ann Stat 36(6):2577–2604
Bickel PJ, Levina E et al (2008b) Regularized estimation of large covariance matrices. Ann Stat 36 (1):199–227
Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochemical Cycles 22(4):1–16. https://doi.org/10.1029/2007GB003158
Bolaño-Ortiz TR, Camargo-Caicedo Y, Vélez-Pereira AM (2015) Emisiones Biogénicas De Monoterpenos En El Parque Nacional Natural Tayrona, Santa Marta (Colombia). Luna Azul 40:102–116
Bourgeois Q, Ekman A ML, Krejci R (2015) Aerosol transport over the andes from the amazon basin to the remote Pacific Ocean: A multiyear CALIOP assessment. Journal of Geophysical Research 120(16):8411–8425. https://doi.org/10.1002/2015JD023254
Breen MS, Long TC, Schultz BD, Williams RW, Richmond-Bryant J, Breen M, Langstaff JE, Devlin RB, Schneider A, Burke JM, Batterman SA, Meng QY (2015) Air pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in central North Carolina. Environ Sci Tech 49(24):14184– 14194
Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, Pryl K, Van Reeuwijk H, Smallbone K, Van Der Veen A (1997) Mapping urban air pollution using gis: a regression-based approach. Int J Geogr Inf Sci 11(7):699–718
Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble kalman filter. Mon Weather Rev 126(6):1719–1724
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Walker KD, Thurston GD, Hayes RB, Lim CC, Turner MC, Jerrett M, Krewski D, Gapstur SM, Diver WR, Ostro B, Goldberg D, Crouse DL, Martin RV, Peters P, Pinault L, Tjepkema M, Van Donkelaar A, Villeneuve PJ, Miller AB, Yin P, Zhou M, Wang L, Janssen NA, Marra M, Atkinson RW, Tsang H, Thach TQ, Cannon JB, Allen RT, Hart JE, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H, Spadaro JV (2018) Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA 115(38):9592–9597
Candiani G, Carnevale C, Finzi G, Pisoni E, Volta M (2013) A comparison of reanalysis techniques: applying optimal interpolation and ensemble kalman filtering to improve air quality monitoring at mesoscale. Sci Total Environ 458-460:7–14
Carlton A G, Wiedinmyer C, Kroll J H (2009) A review of Secondary organic aerosol (SOA) formation from isoprene. Atmospheric Chemistry and Physics 9(14):4987–5005. https://doi.org/10.5194/acp-9-4987-2009
Chen Y, Oliver DS (2010) Cross-covariances and localization for enkf in multiphase flow data assimilation. Comput Geosci 14(4):579–601
Crippa M, Guizzardi D, Muntean M, Schaaf E, Monni S, Doering U, Petrescu AMR (2012) EDGAR v4. 3. 2 global atlas of the three major greenhouse gas emissions for the period 1970-2012. Central Europe 2010:1–20
Cooke C A, Wolfe A P, Hobbs W O (2009) Lake-sediment geochemistry reveals 1400 years of evolving extractive metallurgy at Cerro de Pasco, Peruvian Andes. Geology 37(11):1019–1022. https://doi.org/10.1130/G30276A.1
de Miranda RM, de Fatima Andrade M, Fornaro A, Astolfo R, de Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Quality. Atmosphere and Health 5(1):63–77
Defourny P, Kirches G, Brockmann C, Boettcher M, Peters M, Bontemps S, Lamarche C, Schlerf M, Santoro M (2016) Land cover CCI: product user guide Version 2
Dennis R, Fox T, Fuentes M, Gilliland A, Hanna S, Hogrefe C, Irwin J, Rao ST, Scheffe R, Schere K, Steyn D, Venkatram A (2010) A framework for evaluating regional-scale numerical photochemical modeling systems. Environ Fluid Mech 10(4):471–489
Díaz-Poveda VC (2019) Evaluación de los compuestos orgánicos volátiles (COV) biogénicos y antropogénicos del municipio de Manizales Masters thesis. Universidad Nacional de Colombia, Manizales
Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320(5878):893–897
Eeftens M, Beelen R, De Hoogh K, Bellander T, Cesaroni G, Cirach M, Declercq C, Dedele A, Dons E, De Nazelle A, Dimakopoulou K, Eriksen K, Falq G, Fischer P, Galassi C, Gražulevičiene R, Heinrich J, Hoffmann B, Jerrett M, Keidel D, Korek M, Lanki T, Lindley S, Madsen C, Mȯlter A, Nȧdor G, Nieuwenhuijsen M, Nonnemacher M, Pedeli X, Raaschou-Nielsen O, Patelarou E, Quass U, Ranzi A, Schindler C, Stempfelet M, Stephanou E, Sugiri D, Tsai MY, Yli-Tuomi T, Varró MJ, Vienneau D, Klot SV, Wolf K, Brunekreef B, Hoek G (2012) Development of land use regression models for PM 2.5, PM 2.5 absorbance, PM 10 and PM coarse in 20 European study areas; Results of the ESCAPE project. Environ Sci Technol 46(20):11195–11205
Emmons LK, Walters S, Hess PG, Lamarque JF, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev 3(1):43–67
Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, ter Steege H, Lopez-Gonzalez G, Monteagudo Mendoza A, Brienen R, Feldpausch TR, Pitman N, Alonso A, van der Heijden G, Peṅa-Claros M, Ahuite M, Alexiaides M, Álvarez Dȧvila E, Murakami AA, Arroyo L, Aulestia M, Balslev H, Barroso J, Boot R, Cano A, Chama Moscoso V, Comiskey JA, Cornejo F, Dallmeier F, Daly DC, Dȧvila N, Duivenvoorden JF, Duque Montoya AJ, Erwin T, Di Fiore A, Fredericksen T, Fuentes A, García-Villacorta R, Gonzales T, Guevara Andino JE, Honorio Coronado EN, Huamantupa-Chuquimaco I, Killeen TJ, Malhi Y, Mendoza C, Mogollón H, Jørgensen PM, Montero JC, Mostacedo B, Nauray W, Neill D, Vargas PN, Palacios S, Palacios Cuenca W, Pallqui Camacho NC, Peacock J, Phillips JF, Pickavance G, Quesada CA, Ramírez-Angulo H, Restrepo Z, Reynel Rodriguez C, Paredes MR, Sierra R, Silveira M, Stevenson P, Stropp J, Terborgh J, Tirado M, Toledo M, Torres-Lezama A, Umaṅa MN, Urrego LE, Vasquez Martinez R, Gamarra LV, Vela CI, Vilanova Torre E, Vos V, von Hildebrand P, Vriesendorp C, Wang O, Young KR, Zartman CE, Phillips OL (2017) Seasonal drought limits tree species across the Neotropics. Ecography 40(5):618–629
Estrella B, Sempértegui F, Franco OH, Cepeda M, Naumova EN (2019) Air pollution control and the occurrence of acute respiratory illness in school children of Quito, Ecuador. J Public Health Policy 40(1):17–34
Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. 99
Evensen G (2003a) The ensemble kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367
Evensen G (2003b) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367
Evensen G (2009) The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst 29(3):83–104
Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasier F, Tao F, Guo A, Paoletti E. (2019) Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environment International 131(May):104966. https://doi.org/10.1016/j.envint.2019.104966
Fu G, Heemink A, Lu S, Segers A, Weber K, Lin HX (2016a) Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements. Atmos Chem Phys 16(14):9189–9200
Fu G, Lin H-X, Heemink A, Segers A, Prata F, Lu S (2016b) Satellite data assimilation to improve forecasts of volcanic ash concentrations. Atmos Chem Phys Discuss 18:1–22
Fu G, Lin HX, Heemink a. W., Segers a. J., Lu S, Palsson T (2015) Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport. Atmos Environ 115:170–184
Fu G, Prata F, Xiang Lin H, Heemink A, Segers A, Lu S (2017) Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption. Atmos Chem Phys 17(2):1187–1205
Galmarini S, Bianconi R, Klug W, Mikkelsen T, Addis R, Andronopoulos S, Astrup P, Baklanov A, Bartniki J, Bartzis JC, Bellasio R, Bompay F, Buckley R, Bouzom M, Champion H, D’Amours R, Davakis E, Eleveld H, Geertsema GT, Glaab H, Kollax M, Ilvonen M, Manning A, Pechinger U, Persson C, Polreich E, Potemski S, Prodanova M, Saltbones J, Slaper H, Sofiev MA, Syrakov D, Sørensen JH, Auwera LVD, Valkama I, Zelazny R (2004) Ensemble dispersion forecasting - part I: concept, approach and indicators. Atmos Environ 38(28):4607–4617
Galmarini S, Kioutsioukis I, Solazzo E (2013) E pluribus unum: ensemble air quality predictions. Atmos Chem Phys 13(14):7153–7182
Galmarini S, Kioutsioukis I, Solazzo E, Alyuz U, Balzarini A, Bellasio R, Benedictow AM, Bianconi R, Bieser J, Brandt J, Christensen JH, Colette A, Curci G, Davila Y, Dong X, Flemming J, Francis X, Fraser A, Fu J, Henze DK, Hogrefe C, Im U, Vivanco MG, Jimėnez-Guerrero P, Jonson JE, Kitwiroon N, Manders A, Mathur R, Palacios-Peṅa L, Pirovano G, Pozzoli L, Prank M, Schultz M, Sokhi RS, Sudo K, Tuccella P, Takemura T, Sekiya T, Unal A (2018) Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more? Atmos Chem Phys 18(12):8727–8744
Godinez HC, Moulton JD (2012) An efficient matrix-free algorithm for the ensemble kalman filter. Comput Geosci 16(3):565–575
Gonzalez CM, Gomez CD, Rojas NY, Acevedo H, Aristizabal BH (2017) Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos Environ 152:279–289
González CM, Ynoue RY, Vara-Vela A, Rojas NY, Aristizábal BH (2018) High-resolution air quality modeling in a medium-sized city in the tropical Andes: assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmos Poll Res 2017:1–15
Greybush SJ, Kalnay E, Miyoshi T, Ide K, Hunt BR (2011) Balance and ensemble kalman filter localization techniques. Mon Weather Rev 139(2):511–522
Guenther A, Karl T, Harley P, Weidinmyer C, Palmer PI, Geron C (2006) Edinburgh research explorer estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) and physics e of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases an. Atmos Chem Phys 6:3181–3210
Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5(6):1471–1492
Gustafsson N (2007) Discussion on ‘4d-var or enkf?’. Tellus A: Dynamic Meteorology and Oceanography 59 (5):774–777
Gustafsson N, Bojarova J (2014) Four-dimensional ensemble variational (4d-en-var) data assimilation for the high resolution limited area model (hirlam). Nonlinear Processes Geophys 21(4):745–762
Habermann M, Billger M, Haeger-Eugensson M (2015) Land use regression as method to model air pollution. Previous results for Gothenburg/Sweden. Procedia Eng 115(0):21–28
Hagan N, Robins N, Hsu-Kim H, Halabi S, Morris M, Woodall G, Zhang T, Bacon A, Richter D de B, Vandenberg J (2011) Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia. Atmospheric Environment 45(40):7619–7626. https://doi.org/10.1016/j.atmosenv.2010.10.009
Han Y, Zhang J, Sun D (2018) Error control and adjustment method for underwater wireless sensor network localization. Appl Acoust 130:293–299
Harley P, Vasconcellos P, Vierling L, Pinheiro CCDS, Greenberg J, Guenther A, Klinger L, De Almeida SS, Neill D, Baker T, Phillips O, Malhi Y (2004) Variation in potential for isoprene emissions among Neotropical forest sites. Glob Chang Biol 10(5):630–650
Harlim J, Hunt BR (2007) Four-dimensional local ensemble transform kalman filter: numerical experiments with a global circulation model. Tellus A: Dynamic Meteorology and Oceanography 59(5):731–748
Hendriks C, Kranenburg R, Kuenen J, van Gijlswijk R, Wichink Kruit R, Segers A, Denier van der Gon H, Schaap M (2013) The origin of ambient particulate matter concentrations in the Netherlands. Atmos Environ 69:289–303
Henrot AJ, Stanelle T, Schröder S, Siegenthaler C, Taraborrelli D, Schultz MG (2017) Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model. Geosci Model Dev 10(2):903–926
Hernandez A J, Morales-Rincon L A, Wu D, Mallia D, Lin J C, Jimenez R (2019) Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment 205(45):1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42(33):7561–7578
Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble kalman filter technique. Mon Weather Rev 126(3):796–811
Huang X-Y, Xiao Q, Barker DM, Zhang X, Michalakes J, Huang W, Henderson T, Bray J, Chen Y, Ma Z et al (2009) Four-dimensional variational data assimilation for wrf: formulation and preliminary results. Mon Weather Rev 137(1):299–314
Huertas JI, Huertas ME, Izquierdo S, Gonzlez ED (2012) Air quality impact assessment of multiple open pit coal mines in northern Colombia. Journal of Environmental Management 93(1):121–129. https://doi.org/10.1016/j.jenvman.2011.08.007
Huertas JI, Huertas ME, Cervantes G, Daz J (2014) Assessment of the natural sources of particulate matter on the opencast mines air quality. Science of the Total Environment 493:1047–1055. https://doi.org/10.1016/j.scitotenv.2014.05.111
Ito S-I, Nagao H, Yamanaka A, Tsukada Y, Koyama T, Kano M, Inoue J (2016) Data assimilation for massive autonomous systems based on a second-order adjoint method. Phys Rev E 94(4):043307
Jiang J, Aksoyoglu S, Ciarelli G, Oikonomakis E, El-Haddad I, Canonaco F, O’dowd C, Ovadnevaite J, Minguillón MC, Baltensperger U, Cruz M (2019) Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmos Chem Phys 19(6):3747–3768
Jin J, Lin HX, Heemink A, Segers A (2018) Spatially varying parameter estimation for dust emissions using reduced-tangent-linearization 4DVar. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2018.05.060
Jin J, Lin HX, Segers A, Xie Y, Heemink A (2019) Machine learning for observation bias correction with application to dust storm data assimilation. Atmospheric Chemistry and Physics 19(15):10009–10026. https://doi.org/10.5194/acp-19-10009-2019
Joseph J, Sharif HO, Sunil T, Alamgir H (2013) Application of validation data for assessing spatial interpolation methods for 8-h ozone or other sparsely monitored constituents. Environ Pollut 178:411–418
Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge
Kioutsioukis I, Galmarini S (2014) De praeceptis ferendis: good practice in multi-model ensembles. Atmos Chem Phys 14(21):11791–11815
Kryza M, Szymanowski M, Dore AJ, Werner M (2011) Application of a land - use regression model for calculation of the spatial pattern of annual NOx air concentrations at national scale: a case study for Poland. Proc Environ Sci 7:98–103
Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M, Tarvainen V, Boy M, Peuch V-H, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi R, Lehtinen KEJ, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E, Jakobs H, Eben K (2012) A review of operational, regional-scale, chemical weather forecasting models in europe. Atmos Chem Phys 12(1):1–87
Kumar A, Jiménez R, Belalcázar LC, Rojas NY (2016) Application of WRF-chem model to simulate PM10 concentration over Bogota. Aerosol Air Qual Res 16(5):1206–1221
Kumar U, De Ridder K, Lefebvre W, Janssen S (2012) Data assimilation of surface air pollutants (O 3 and NO 2) in the regional-scale air quality model AURORA. Atmos Environ 60(2):99–108
Kurtén T, Zhou L, Makkonen R, Merikanto J, Räisänen P, Boy M, Richards N, Rap A, Smolander S, Sogachev A, Guenther A, Mann G W, Carslaw K, Kulmala M (2011) Large methane releases lead to strong aerosol forcing and reduced cloudiness. Atmospheric Chemistry and Physics 11(14):6961–6969. https://doi.org/10.5194/acp-11-6961-2011
Lahoz W, Khattatov B, Menard R (2010) Data assimilation. Springer, Berlin
LeDuc S, Fine S (2002) Models-3/Community Multiscale Air Quality (CMAQ) Modeling System. In: Borrego C, Schayes G (eds) Air Pollution Modeling and Its Application XV. https://doi.org/10.1007/0-306-47813-7_30. Springer US, Boston, MA, pp 307–310
Lei L, Whitaker JS, Bishop C (2018) Improving assimilation of radiance observations by implementing model space localization in an ensemble kalman filter. J Adv Model Earth Syst 10(12):3221–3232
Levina E, Rothman A, Zhu J, et al. (2008) Sparse estimation of large covariance matrices via a nested lasso penalty. Ann Appl Stat 2(1):245–263
Liu C, Xiao Q, Wang B (2008) An ensemble-based four-dimensional variational data assimilation scheme. part i: technical formulation and preliminary test. Mon Weather Rev 136(9):3363–3373
Liaskos C E, Allen D J, Pickering K E (2015) Journal of Geophysical Research : Atmospheres by replay simulations with GEOS-5. Journal of Geophysical Research Atmospheres 120:8512–8534. https://doi.org/10.1002/2014JD022987
Londoño-Ciro LA, Cañón-Barriga JE (2018) Metodología para la caracterización espacio-temporal de PM2. 5 en el área urbana de la ciudad de Medellín-Colombia Spatio-Temporal Characterization Methodology of PM2. 5 in the Urban Area of the City of Medellín-Colombia Abstract Metodologia para a cara. Revista EIA 574:113–132
Lorenc AC (2003) The potential of the ensemble kalman filter for nwp—a comparison with 4d-var. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 129(595):3183–3203
Lorenc AC, Bowler NE, Clayton AM, Pring SR, Fairbairn D (2015) Comparison of hybrid-4denvar and hybrid-4dvar data assimilation methods for global nwp. Mon Weather Rev 143(1):212– 229
Loreto F, Fineschi S (2015) Reconciling functions and evolution of isoprene emission in higher plants. N Phytol 206(2):578–582
Lu S, Lin HX, Heemink AW, Fu G, Segers AJ (2016) Estimation of volcanic ash emissions using trajectory-based 4D-Var data assimilation. Mon Weather Rev 144(2):575–589
Ma M, Gao Y, Wang Y, Zhang S, Leung LR, Liu C, Wang S, Zhao B, Chang X, Su H, Zhang T, Sheng L, Yao X, Gao H (2019) Substantial ozone enhancement over the north China plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmos Chem Phys Discuss 2019:1–27
Makowski GS, Rollenbeck R, Fabian P, Bendix J (2013) Complex topography influences atmospheric nitrate deposition in a neotropical mountain rainforest. Atmospheric Environment 79:385–394. https://doi.org/10.1016/j.atmosenv.2013.06.023
Manders AMM, Builtjes PJH, Curier L, Denier Van Der Gon HAC, Hendriks C, Jonkers S, Kranenburg R, Kuenen JJP, Segers AJ, Timmermans RMA, Visschedijk AJH, Kruit RJW, Addo W, Van Pul J, Sauter FJ, Van Der Swaluw E, Swart DPJ, Douros J, Eskes H, Van Meijgaard E, Van Ulft B, Van Velthoven P, Banzhaf S, Mues AC, Stern R, Fu G, Lu S, Heemink A, Van Velzen N, Schaap M (2017) Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci Model Dev 10:4145–4173
Marėcal V, Peuch V, Andersson C, Andersson S, Arteta J, Beekmann M, Benedictow A, Bergstrȯm R (2015) A regional air quality forecasting system over Europe : the MACC-II daily ensemble production. Geosci Model Dev 2:2777–2813
Mass C (2014) Cliff mass weather and climate blog
Mendez-Espinosa J F, Belalcazar L C, Morales Betancourt R (2019) Regional air quality impact of northern South America biomass burning emissions. Atmospheric Environment 203(January):131–140. https://doi.org/10.1016/j.atmosenv.2019.01.042
Miyoshi T, Kunii M (2012) The local ensemble transform kalman filter with the weather research and forecasting model: experiments with real observations. Pure Appl Geophys 169(3):321–333
Montero L, Vasconcellos PC, Souza SR, Pires MA, Sanchez-Ccoyllo OR, Andrade MF, Carvalho LR (2001) Measurements of atmospheric carboxylic acids and carbonyl compounds in São Paulo City, Brazil. Environ Sci Tech 35(15):3071–3081
Monks P S, Archibald A T, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law K S, Mills G E, Stevenson D S, Tarasova O, Thouret V, Von Schneidemesser E, Sommariva R, Wild O, Williams M L (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics 15(15):8889–8973. https://doi.org/10.5194/acp-15-8889-2015
Moussiopoulos N (1995) The EUMAC Zooming Model, a tool for local-to-regional air quality studies. Meteorology and Atmospheric Physics 57(1-4):115–133. https://doi.org/10.1007/BF01044157
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858
Nasari MM, Szyszkowicz M, Chen H, Crouse D, Turner MC, Jerrett M, Pope CA, Hubbell B, Fann N, Cohen A, Gapstur SM, Diver WR, Stieb D, Forouzanfar MH, Kim SY, Olives C, Krewski D, Burnett RT (2016) A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution. Air Qual Atmosp Health 9(8):961–972
Nault BA, Laughner JL, Wooldridge PJ, Crounse JD, Dibb J, Diskin G, Peischl J, Podolske JR, Pollack IB, Ryerson TB, Scheuer E, Wennberg PO, Cohen RC (2017) Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry. Geophysical Research Letters 44 (18):9479–9488. https://doi.org/10.1002/2017GL074436
Nedbor-Gross R, Henderson BH, Pėrez-Peṅa MP, Pachón J. E. (2018) Air quality modeling in Bogotá Colombia using local emissions and natural mitigation factor adjustment for re-suspended particulate matter. Atmos Poll Res 9(1):95–104
Nguyen CV, Soulhac L, Salizzoni P (2018) Source apportionment and data assimilation in urban air quality modelling for NO2: the lyon case study. Atmosphere, 9
Nino-Ruiz E (2017) A matrix-free posterior ensemble kalman filter implementation based on a modified cholesky decomposition. Atmosphere 8(7):125
Nino-Ruiz ED, Mancilla A, Calabria JC (2017a) A posterior ensemble kalman filter based on a modified cholesky decomposition. Procedia Computer Science, 108:2049–2058. International Conference on Computational Science, ICCS 2017 12-14 June 2017, Zurich, Switzerland
Nino-Ruiz ED, Sandu A, Deng X (2017b) A parallel implementation of the ensemble kalman filter based on modified cholesky decomposition. Journal of Computational Science
Nino-Ruiz ED, Sandu A, Deng X (2018) An ensemble kalman filter implementation based on modified cholesky decomposition for inverse covariance matrix estimation. SIAM J Sci Comput 40(2):A867–A886
Nogueira T, Kumar P, Nardocci A, de Fatima Andrade M (2020) Public health implications of particulate matter inside bus terminals in Sao Paulo, Brazil. Science of the Total Environment 711:135064
Orsini CQ, Tabacniks MH, Artaxo P, Andrade MF, Kerr AS (1967) Characteristics of fine and coarse particles of natural and urban aerosols of Brazil. Atmos Environ 20(11):2259–2269
Owens RG, Hewson TD (2018) ECMWF forecast user guide. Reading: ECMWF. Technical report
Pachón JE, Galvis B, Lombana O, Carmona LG, Fajardo S, Rincón A, Meneses S, Chaparro R, Nedbor-Gross R, Henderson B (2018) Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotȧ. Atmosphere 9(2):1–17
Parra R (2008) Contribution of oil palm isoprene emissions to tropospheric ozone levels in the Distrito Metropolitano de Quito (Ecuador). WIT Transactions on Ecology and the Environment 116:95–104. https://doi.org/10.2495/AIR080111
Parra Rene (2017) Assessment of planetary boundary layer schemes of the WRF-Chem model in the simulation of carbon monoxide dispersion in the urban area of Quito, Ecuador. WIT Transactions on Ecology and the Environment 211:41–50. 10.2495/AIR170041
Parra René (2018) Performance studies of planetary boundary layer schemes in WRF-Chem for the Andean region of Southern Ecuador. Atmospheric Pollution Research 9(3):411–428. https://doi.org/10.1016/j.apr.2017.11.011, https://doi.org/10.1016/j.apr.2017.11.011
Parra René (2018) Influence of boundary layer schemes in modeling the dispersion and sedimentation of volcanic ash in Ecuador. WIT Transactions on Ecology and the Environment 230(1):83–94. https://doi.org/10.2495/AIR180081
Pinel N, Salazar JF, Posada JA, Rodríguez M, Rendón AM, Quintero OL, Yarce A (2017) Potential urban pollution impacts on protected areas in Colombia through atmospheric teleconnections. In: Santos JM, Andrade MDF, Toledo T (eds) Proceedings of the 3rd CMAS South America Air Quality Conference, pages 152–154, Vitória. Fundação Espírito Santense de Tecnologia
Pollastri S, Tsonev T, Loreto F (2014) Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures. J Exp Bot 65(6):1565–1570
Potempski S, Galmarini S (2009) Est modus in rebus: analytical properties of multi-model ensembles. Atmos Chem Phys 9(24):9471–9489
Quintero M, Olga L, Amicarelli A, di Sciascio F, Scaglia G (2008) State estimation in alcoholic continuous fermentation of zymomonas mobilis using recursive bayesian filtering: A simulation approach. Bioresources 3(2):316–334
Quintero M, Olga L, Amicarelli A, Scaglia G, di Sciascio F (2009a) Control based on numerical methods and recursive Bayesian estimation in a continuous alcoholic fermentation process. BioResources 4(4):1372–1395
Quintero M, Olga L, Nieto J, Amicarelli A, Scaglia G, Luna T (2009b) Control engineering perspective of fermentation process from zymomonas mobilis: Modeling, state estimation and control
Rao ST, Galmarini S, Puckett K (2011) Air quality model evaluation international initiative (AQMEII): advancing the state of the science in regional photochemical modeling and its applications. Bull Am Meteorol Soc 92(1):23–30
Reddington C L, Butt E W, Ridley D A, Artaxo P, Morgan W T, Coe H, Spracklen D V (2015) Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience 8(10):768–771. https://doi.org/10.1038/ngeo2535
Reichle RH (2008) Data assimilation methods in the earth sciences. Adv Water Res 31(11):1411–1418
Rendón AM, Salazar JF, Wirth V, Quintero OL (2017) Proceedings of the 3rd CMAS South America Air Quality Conference, pages 146–148, Vitória. Fundação Espírito Santense de Tecnologia. In: Santos JM, Andrade MDF, Toledo T (eds)
Robins NA, Hagan N, Halabi S, Hsu-Kim H, Gonzales RDE, Morris M, Woodall G, Richter DD, Heine P, Zhang T, Bacon A, Vandenberg J (2012) Estimations of historical atmospheric mercury concentrations from mercury refining and present-day soil concentrations of total mercury in Huancavelica, Peru. Science of the Total Environment 426:146–154. https://doi.org/10.1016/j.scitotenv.2012.03.082
Rodriguez M, Yarce A, Rendón AM, Quintero O, Pinel N (2017) Characterization and analysis of sattelite and ground data available for the Aburrá Valley (Medellín Metropolitan Area) as inputs for air quality models. In: Proceedings of the 3rd CMAS South America air quality conference, pp 149–151, Vitoria. Fundação Espírito Santense de Tecnologia
Rodri̇guez-Villamizar LA, Rojas-Roa NY, Blanco-Becerra LC, Herrera-Galindo VM, Fernȧndez-Niṅo JA (2018) Short-term effects of air pollution on respiratory and circulatory morbidity in Colombia 2011–2014: A multi-city, time-series analysis. Int J Environ Res Public Health 15(8):E1610
Rothman AJ, Levina E, Zhu J (2009) Generalized thresholding of large covariance matrices. J Am Stat Assoc 104(485):177–186
Ruiz EDN, Sandu A (2016) A derivative-free trust region framework for variational data assimilation. J Comput Appl Math 293:164–179
Ryan PH, Lemasters GK (2007) A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal Toxicol 19(SUPPL. 1):127–133
Sanchez M, Ambros A, Milà C, Salmon M, Balakrishnan K, Sambandam S, Sreekanth V, Marshall JD, Tonne C (2018) Development of land-use regression models for fine particles and black carbon in peri-urban South India. Sci Total Environ 634:77–86
Sȧnchez-Ccoyllo OR, De Fátima Andrade M (2002) The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo, Brazil. Environ Pollut 116(2):257–263
Sartelet KN, Couvidat F, Seigneur C, Roustan Y (2012) Impact of biogenic emissions on air quality over Europe and North America. Atmos Environ 53:131–141
Schmitt C. G., All J. D., Schwarz J. P., Arnott W. P., Cole R. J., Lapham E., Celestian A. (2015) Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru. Cryosphere 9(1):331–340. https://doi.org/10.5194/tc-9-331-2015
Schmitz R (2005) Modelling of air pollution dispersion in Santiago de Chile. Atmos Environ 39(11):2035–2047
Sebacher B, Hanea R, Heemink A (2013) A probabilistic parametrization for geological uncertainty estimation using the ensemble Kalman filter (EnKF). Comput Geosci 17(5):813–832
Silva SJ, Heald CL (2018) Investigating dry deposition of ozone to vegetation. J Geophys Res Atmos 123 (1):559–573
Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, Stavrakou T, Müller JF, Kuhn U, Stefani P, Knorr W (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14(17):9317–9341
Soares J, Kousa A, Kukkonen J, Matilainen L, Kangas L, Kauhaniemi M, Riikonen K, Jalkanen JP, Rasila T, Hȧnninen O, Koskentalo T, Aarnio M, Hendriks C, Karppinen A (2014) Refinement of a model for evaluating the population exposure in an urban area. Geosci Model Dev 7(5):1855–1872
Solazzo E, Bianconi R, Pirovano G, Matthias V, Vautard R, Moran MD, Appel KW, Bessagnet B, Brandt J, Christensen JH, Chemel C, Coll I, Ferreira J, Forkel R, Francis XV, Grell G, Grossi P, Hansen AB, Miranda AI, Nopmongcol U, Prank M, Sartelet KN, Schaap M, Silver JD, Sokhi RS, Vira J, Werhahn J, Wolke R, Yarwood G, Zhang J, Rao ST, Galmarini S (2012a) Operational model evaluation for particulate matter in europe and north america in the context of aqmeii. Atmos Environ 53:75–92. AQMEII: An International Initiative for the Evaluation of Regional-Scale Air Quality Models - Phase 1
Solazzo E, Bianconi R, Pirovano G, Moran MD, Vautard R, Hogrefe C, Appel KW, Matthias V, Grossi P, Bessagnet B, Brandt J, Chemel C, Christensen JH, Forkel R, Francis XV, Hansen AB, McKeen S, Nopmongcol U, Prank M, Sartelet KN, Segers A, Silver JD, Yarwood G, Werhahn J, Zhang J, Rao ST, Galmarini S (2013) Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants. Geosci Model Dev 6(3):791–818
Solazzo E, Bianconi R, Vautard R, Appel KW, Moran MD, Hogrefe C, Bessagnet B, Brandt J, Christensen JH, Chemel C, Coll I, Denier van der Gon H, Ferreira J, Forkel R, Francis XV, Grell G, Grossi P, Hansen AB, Jeričeviċ A, Kraljeviċ L, Miranda AI, Nopmongcol U, Pirovano G, Prank M, Riccio A, Sartelet KN, Schaap M, Silver JD, Sokhi RS, Vira J, Werhahn J, Wolke R, Yarwood G, Zhang J, Rao TS, Galmarini S (2012b) Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmos Environ 53:60–74
Solazzo E, Galmarini S (2015) Comparing apples with apples: using spatially distributed time series of monitoring data for model evaluation. Atmos Environ 112:234–245
Solazzo E, Hogrefe C, Colette A, Garcia-Vivanco M, Galmarini S (2017) Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework. Atmos Chem Phys 17(17):10435–10465
Steinbrecher R, Smiatek G, Kȯble R, Seufert G, Theloke J, Hauff K, Ciccioli P, Vautard R, Curci G (2009) Intra- and inter-annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries. Atmos Environ 43(7):1380–1391
Stengel M, Undén P, Lindskog M, Dahlgren P, Gustafsson N, Bennartz R (2009) Assimilation of seviri infrared radiances with hirlam 4d-var. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 135(645):2100–2109
Stroud JR, Katzfuss M, Wikle CK (2018) A bayesian adaptive ensemble kalman filter for sequential state and parameter estimation. Mon Weather Rev 146(1):373–386
Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, van Haren J, Simova I, Meir P, Ferreira LV, de Camargo PB, da Costa AC, Enquist BJ, Saleska SR (2018) Isoprene emission structures tropical tree biogeography and community assembly responses to climate. N Phytol 220(2):435–446
Taylor TC, Smith MN, Slot M, Feeley KJ (2019) The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant Cell Environ 42(8):2448–2457
Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical. Phys Eng Sci 365(1857):2053–2075
ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino J-F, Monteagudo A, Núñez Vargas P, Montero JC, Feldpausch TR, Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL, Terborgh J, Wittmann F, Andrade A, Laurance WF, Laurance SGW, Marimon BS, Marimon B-H Jr, Al E (2013) Hyperdominance in the amazonian tree flora. Science 342:1243092–1–9
Tilloy A, Mallet V, Poulet D, Pesin C, Brocheton F (2013) BLUE-based NO < inf > 2</inf> data assimilation at urban scale. J Geophys Res Atmos 118(4):2031–2040
Toro MV, Cremades LV, Calbó J (2006) Relationship between VOC and NOxemissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Chemosphere 65(5):881–888
Toro GMV, Cremades OLV, Ramirez BJJ (2001) Inventario de emisiones biogenicas en el valle de Aburrȧ. Revista Ingenierí,a y Gestión Ambiental, 17(32)
Tr’emolet Y (2006) Accounting for an imperfect model in 4d-var. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 132(621):2483–2504
Trémolet Y. (2007) Incremental 4d-var convergence study. Tellus A: Dynamic Meteorology and Oceanography 59(5):706–718
Uglietti C, Gabrielli P, Cooke CA, Vallelonga P, Thompson LG (2015) Widespread pollution of the south american atmosphere predates the industrial revolution by 240 y. Proceedings of the National Academy of Sciences of the United States of America 112(8):2349–2354. https://doi.org/10.1073/pnas.1421119112
Ulke AG, Andrade MF (2001) Modeling urban air pollution in Sao Paulo, Brazil: sensitivity of model predicted concentrations to different turbulence parameterizations. Atmos Environ 35(10):747–1763
Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43(3):604–618
Van Nunen E, Vermeulen R, Tsai MY, Probst-Hensch N, Ineichen A, Davey M, Imboden M, Ducret-Stich R, Naccarati A, Raffaele D, Ranzi A, Ivaldi C, Galassi C, Nieuwenhuijsen M, Curto A, Donaire-Gonzalez D, Cirach M, Chatzi L, Kampouri M, Vlaanderen J, Meliefste K, Buijtenhuijs D, Brunekreef B, Morley D, Vineis P, Gulliver J, Hoek G (2017) Land use regression models for ultrafine particles in six European areas. Environ Sci Tech 51(6):3336–3345
van Velzen N, Segers AJ (2010) A problem-solving environment for data assimilation in air quality modelling. Environ Model Softw 25(3):277–288
Vivanco MG, Andrade MDF (2006) Validation of the emission inventory in the Sao Paulo Metropolitan Area of Brazil, based on ambient concentrations ratios of CO, NMOG and NOx and on a photochemical model. Atmos Environ 40(7):1189–1198
Wang X, Hamill TM, Whitaker JS, Bishop CH (2007) A comparison of hybrid ensemble transform kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon Weather Rev 135(3):1055–1076
Wang X, Mallet V, Berroir JP, Herlin I (2011) Assimilation of OMI NO2 retrievals into a regional chemistry-transport model for improving air quality forecasts over Europe. Atmos Environ 45(2):485–492
Wang N, Lyu X, Deng X, Huang X, Jiang F, Ding A (2019) Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment 677:732–744. https://doi.org/10.1016/j.scitotenv.2019.04.388
Weichenthal S, Van Ryswyk K, Goldstein A, Shekarrizfard M, Hatzopoulou M (2016) Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: a land use regression model. Environ Pollut 208:241–248
WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. Technical report, World Health Organization
Worden HM, Bloom AA, Worden JR, Jiang Z, Marais E, Stavrakou T, Gaubert B, Lacey F (2019) New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes. Atmos Chem Phys Discuss 30:1–19
Wu H, Reis S, Lin C, Heal MR (2017) Effect of monitoring network design on land use regression models for estimating residential NO2 concentration. Atmos Environ 149:24–33
Yin J, Zhan X, Zheng Y, Hain CR, Liu J, Fang L (2015) Optimal ensemble size of ensemble kalman filter in sequential soil moisture data assimilation. Geophys Res Lett 42(16):6710–6715
Yim S H L, Gu Y, Shapiro M, Stephens B (2019) Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea. Atmospheric Chemistry and Physics Discussions. 1–23. https://doi.org/10.5194/acp-2019-175
Zhang XL, Li QB, Su GF, Yuan MQ (2015) Ensemble-based simultaneous emission estimates and improved forecast of radioactive pollution from nuclear power plant accidents: Application to ETEX tracer experiment. J Environ Radioact 142:78–86
Zhang R, Cohan A, Pour Biazar A, Cohan D S (2017) Source apportionment of biogenic contributions to ozone formation over the United States. Atmospheric Environment 164:8–19. https://doi.org/10.1016/j.atmosenv.2017.05.044
Zhang R, White A T, Pour B, Arastoo M, Richard T, Cohan D S (2018) Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas. Journal of Geophysical Research: Atmospheres 123(2):1309–1324. https://doi.org/10.1002/2017JD026792
Zhu Q, Laughner JL, Cohen R C (2019) Lightning NO2 simulation over the contiguous US and its effects on satellite NO2 retrievals. Atmospheric Chemistry and Physics 19(20):13067–13078. https://doi.org/10.5194/acp-19-13067-2019
Funding
This work was financially supported in part by award UN 2018-38 and by the Applied Math and Computer Science Lab at Universidad del Norte, Colombia, also partly supported from the research grant “Data Assimilation Schemes in Colombian Geodynamics - Cooperative Research Plan for 2017–2020 between Universidad EAFIT and TUDelft” made feasible the statements, ideas, and developments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Responsible Editor: Marcus Schulz
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Montoya, O.L.Q., Niño-Ruiz, E.D. & Pinel, N. On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes. Environ Sci Pollut Res 27, 35993–36012 (2020). https://doi.org/10.1007/s11356-020-08268-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-020-08268-4