Skip to main content
Log in

The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks, an emerging class of porous material, have developed rapidly in recent years. In order to clarify the application of metal-organic frameworks in the field of environmental science, 1386 articles over the last 20 years were obtained from Scopus and analysed by the bibliometric method. And the collaboration between countries, institutions and authors and the co-occurrence of keywords were also conducted using VOSviewer. The results indicated that this area of research has entered a fast-developing stage. The number of articles published has grown from 7 articles in 1999 to 378 articles in 2018. The most productive country was China with 626 articles published. The most productive institution was the Chinese Academy of Sciences, and the most productive author was Jhung SH from Kyungpook National University of South Korea. Although metal-organic frameworks have been widely used in adsorption and catalytic degradation of pollutants from the environment, the removal mechanism of pollutants by MOFs, the stability improvement and the cost reduction of metal-organic frameworks are still the main challenges for their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed I, Jhung SH (2014) Adsorptive denitrogenation of model fuel with CuCl-loaded metal–organic frameworks (MOFs). Chem Eng J 251:35–42

    CAS  Google Scholar 

  • Ahmed I, Hasan Z, Khan NA, Jhung SH (2013a) Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): effect of acidity and basicity of MOFs. Appl Catal B-Environ 129:123–129

    CAS  Google Scholar 

  • Ahmed I, Khan NA, Hasan Z, Jhung SH (2013b) Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: effect of acid site inclusion. J Hazard Mater 250-251:37–44

    CAS  Google Scholar 

  • Ahmed I, Khan NA, Jhung SH (2017) Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chem Eng J 321:40–47

    CAS  Google Scholar 

  • Ahsan MA, Jabbari V, Islam MT, Turley RS, Dominguez N, Kim H, Castro E, Hernandez-Viezcas JA, Curry ML, Lopez J, Gardea-Torresdey JL, Noveron JC (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317

    CAS  Google Scholar 

  • Aleixandre-Benavent R, Aleixandre-Tudó JL, Castelló-Cogollos L, Aleixandre JL (2017) Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). J Clean Prod 147:406–418

    Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix : An R-tool for comprehensive science mapping analysis. J Inf Secur 11:959–975

    Google Scholar 

  • Awual MR (2017) Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem Eng J 307:456–465

    CAS  Google Scholar 

  • Awual MR (2019) An efficient composite material for selective lead(II) monitoring and removal from wastewater. J Environ Chem Eng 7:103087

    CAS  Google Scholar 

  • Awual MR, Hasan MM, Rahman MM, Asiri AM (2019) Novel composite material for selective copper(II) detection and removal from aqueous media. J Mol Liq 283:772–780

    CAS  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    CAS  Google Scholar 

  • Barea E, Montoro C, Navarro JA (2014) Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430

    CAS  Google Scholar 

  • Bhadra BN, Ahmed I, Kim S, Jhung SH (2017) Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem Eng J 314:50–58

    CAS  Google Scholar 

  • Bloch ED, Hudson MR, Mason JA, Chavan S, Crocellà V, Howe JD, Lee K, Dzubak AL, Queen WL, Zadrozny JM, Geier SJ, Lin LC, Gagliardi L, Smit B, Neaton JB, Bordiga S, Brown CM, Long JR (2014) Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations. J Am Chem Soc 136:10752–10761

    CAS  Google Scholar 

  • Brandt P, Nuhnen A, Lange M, Möllmer J, Weingart O, Janiak C (2019) Metal-organic frameworks with potential application for SO2 separation and flue gas desulfurization. Appl Mater Interfaces 11:17350–17358

    CAS  Google Scholar 

  • Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105:11623–11627

    CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Google Scholar 

  • Chen Y, Lv D, Wu J, Xiao J, Xi H, Xia Q, Li Z (2017) A new MOF-505@GO composite with high selectivity for CO2 /CH4 and CO2/N2 separation. Chem Eng J 308:1065–1072

    CAS  Google Scholar 

  • Chowdhury P, Mekala S, Dreisbach F, Gumma S (2012) Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: effect of open metal sites and adsorbate polarity. Micropor Mesopor Mat 152:246–252

    CAS  Google Scholar 

  • Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    CAS  Google Scholar 

  • DeCoste JB, Peterson GW (2014) Metal-organic frameworks for air purification of toxic chemicals. Chem Rev 114:5695–5727

    CAS  Google Scholar 

  • Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordin Chem Rev 380:330–352

    CAS  Google Scholar 

  • Dou R, Zhang J, Chen Y, Feng S (2017) High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al). Environ Sci Pollut Res 24:8778–8789

    CAS  Google Scholar 

  • Ebrahim AM, Levasseur B, Bandosz TJ (2013) Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. Langmuir 29:168–174

    CAS  Google Scholar 

  • Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I (2004) A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem 116:6456–6461

    Google Scholar 

  • Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Google Scholar 

  • Fetscherin M, Heinrich D (2015) Consumer brand relationships research: a bibliometric citation meta-analysis. J Bus Res 68:380–390

    Google Scholar 

  • Fu L, Wang S, Lin G, Zhang L, Liu Q, Fang J, Wei C, Liu G (2019) Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of hg(II) in water. J Hazard Mater 368:42–51

    CAS  Google Scholar 

  • Gong X, Zhao R, Qin J, Wang H, Wang D (2019) Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature. Chem Eng J 358:291–298

    CAS  Google Scholar 

  • Guan T, Li X, Fang W, Wu D (2020) Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups. Appl Surf Sci 501:144074

    CAS  Google Scholar 

  • Hakimifar A, Morsali A (2019) Urea-based metal-organic frameworks as high and fast adsorbent for hg(2+) and Pb(2+) removal from water. Inorg Chem 58:180–187

    CAS  Google Scholar 

  • Hamon L, Serre C, Devic T, Loiseau T, Millange F, Férey G, De Weireld G (2009) Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. J Am Chem Soc 131:8775–8777

    CAS  Google Scholar 

  • Han T, Xiao Y, Tong M, Huang H, Liu D, Wang L, Zhong C (2015) Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem Eng J 275:134–141

    CAS  Google Scholar 

  • Haque E, Lee JE, Jang IT, Hwang YK, Chang JS, Jegal J, Jhung SH (2010) Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J Hazard Mater 181:535–542

    CAS  Google Scholar 

  • Haque E, Jun JW, Jhung SH (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185:507–511

    CAS  Google Scholar 

  • Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Mater 209-210:151–157

    CAS  Google Scholar 

  • Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506

    CAS  Google Scholar 

  • He L, Dong Y, Zheng Y, Jia Q, Shan S, Zhang Y (2019) A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J Hazard Mater 361:85–94

    CAS  Google Scholar 

  • He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energ Environ Sci 5:9107–9120

    CAS  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual's scientific research output. PNAS 102:16569–16572

    CAS  Google Scholar 

  • Horcajada P, Surble S, Serre C, Hong DY, SeO YK, Chang JS, Greneche JM, Margiolaki I, Ferey G (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 27:2820–2822

    Google Scholar 

  • Hu H, Han L, Yu M, Wang Z, Lou XW (2016) Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co S double-shelled nanocages for efficient oxygen reduction. Energ Environ Sci 9:107–111

    CAS  Google Scholar 

  • Huo SH, Yan XP (2012) Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst 137:3445–3451

    CAS  Google Scholar 

  • Kolesnikov S, Fukumoto E, Bozeman B (2018) Researchers’ risk-smoothing publication strategies: is productivity the enemy of impact? Scientometrics 116:1995–2017

    CAS  Google Scholar 

  • Li W, Zhao Y (2015) Bibliometric analysis of global environmental assessment research in a 20-year period. Environ Impact Asses 50:158–166

    Google Scholar 

  • Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    CAS  Google Scholar 

  • Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    CAS  Google Scholar 

  • Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC (2018a) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121

    CAS  Google Scholar 

  • Li J, Yan D, Hou S, Lu T, Yao Y, Chua DHC, Pan L (2018b) Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem Eng J 335:579–589

    CAS  Google Scholar 

  • Liu J, Wei Y, Li P, Zhao Y, Zou R (2017) Selective H2S/CO2 separation by metal–organic frameworks based on chemical-physical adsorption. J Phys Chem C 121:13249–13255

    CAS  Google Scholar 

  • Liu W, Shen X, Han Y, Liu Z, Dai W, Dutta A, Kumar A, Liu J (2019) Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere 215:524–531

    CAS  Google Scholar 

  • Ma J, Guo X, Ying Y, Liu D, Zhong C (2017) Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem Eng J 313:890–898

    CAS  Google Scholar 

  • Mahmoud ME, Amira MF, Seleim SM, Mohamed AK (2020) Amino-decorated magnetic metal-organic framework as a potential novel platform for selective removal of chromium (Vl), cadmium (II) and lead (II). J Hazard Mater 381:120979

    CAS  Google Scholar 

  • Mason JA, Sumida K, Herm ZR, Krishna R, Long JR (2011) Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4:3030–3040

    CAS  Google Scholar 

  • McKinlay AC, Eubank JF, Wuttke S, Xiao B, Wheatley PS, Bazin P, Lavalley JC, Daturi M, Vimont A, De Weireld G, Horcajada P, Serre C, Morris RE (2013) Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal–organic frameworks. Chem Mater 25:1592–1599

    CAS  Google Scholar 

  • Mauter M.S., Elimelech M (2008) Environmental applications of carbon-based Nanomaterials. Environ Sci Technol 42:5843–5859

    CAS  Google Scholar 

  • Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103:10186–10191

    CAS  Google Scholar 

  • Peng J, Xian S, Xiao J, Huang Y, Xia Q, Wang H, Li Z (2015) A supported cu(I)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem Eng J 270:282–289

    CAS  Google Scholar 

  • Peterson GW, Mahle JJ, Decoste JB, Gordon WO, Rossin JA (2016) Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem Int Ed 55:6235–6238

    CAS  Google Scholar 

  • Qiu S, Xue M, Zhu G (2014) Metal-organic framework membranes: from synthesis to separation application. Chem Soc Rev 43:6116–6140

    CAS  Google Scholar 

  • Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Micropor Mesopor Mat 73:3–14

    CAS  Google Scholar 

  • Saha D, Deng S (2009) Adsorption equilibria and kinetics of carbon monoxide on zeolite 5A, 13X, MOF-5, and MOF-177. J Chem Eng Data 54:2245–2250

    CAS  Google Scholar 

  • Saha D, Bao Z, Jia F, Deng S (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826

    CAS  Google Scholar 

  • Sarker M, Song JY, Jhung SH (2018) Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J 335:74–81

    CAS  Google Scholar 

  • Savage M, Cheng Y, Easun TL, Eyley JE, Argent SP, Warren MR, Lewis W, Murray C, Tang CC, Frogley MD, Cinque G, Sun J, Rudić S, Murden RT, Benham MJ, Fitch AN, Blake AJ, Ramirez-Cuesta AJ, Yang S, Schröder M (2016) Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv Mater 28:8705–8711

    CAS  Google Scholar 

  • Sayari A, Belmabkhout Y, Serna-Guerrer R (2011) Flue gas treatment via CO adsorption. Chem Eng J 171:760–774

    CAS  Google Scholar 

  • Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404:982–986

    CAS  Google Scholar 

  • Seyfi Hasankola Z, Rahimi R, Shayegan H, Moradi E, Safarifard V (2020) Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorg Chim Acta 501:119264

    Google Scholar 

  • Shahat A, Awual MR, Naushad M (2015) Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem Eng J 271:155–163

    CAS  Google Scholar 

  • Shao X, Feng Z, Xue R, Ma C, Wang W, Peng X, Cao D (2011) Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: preparation, measurements and simulation. AICHE J 57:3042–3051

    CAS  Google Scholar 

  • Shi X, Liu S, Tang B, Lin X, Li A, Chen X, Zhou J, Ma Z, Song H (2017) SnO2/TiO2 nanocomposites embedded in porous carbon as a superior anode material for lithium-ion batteries. Chem Eng J 330:453–461

    CAS  Google Scholar 

  • Simmons JM, Wu H, Zhou W, Yildirim T (2011) Carbon capture in metal-organic frameworks-a comparative study. Energ Environ Sci 4:2177–2185

    CAS  Google Scholar 

  • Siyal AA, Shamsuddin MR, Low A, Rabat NE (2020) A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manag 254:109797

    CAS  Google Scholar 

  • Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem 11:1031–1036

    CAS  Google Scholar 

  • Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374

    CAS  Google Scholar 

  • Sun W, Li H, Li H, Li S, Cao X (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation. Chem Eng J 360:645–653

    CAS  Google Scholar 

  • Van de Voorde B, Bueken B, Denayer J, De Vos D (2014) Adsorptive separation on metal-organic frameworks in the liquid phase. Chem Soc Rev 43:5766–5788

    Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Google Scholar 

  • Wang B, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    CAS  Google Scholar 

  • Wang CC, Li JR, Lv XL, Zhang YQ, Guo G (2014a) Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ Sci 7:2831–2867

    CAS  Google Scholar 

  • Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z (2014b) CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Front Chem Sci Eng 8:340–345

    Google Scholar 

  • Wang DF, Wu GP, Zhao YF, Cui LZ, Shin CH, Ryu MH, Cai JX (2018) Study on the copper(II)-doped MIL-101(Cr) and its performance in VOCs adsorption. Environ Sci Pollut Res 25:28109–28119

    CAS  Google Scholar 

  • Wang CC, Yi XH, Wang P (2019a) Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl Catal B-Environ 247:24–48

    CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L, Li H (2015) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B-Environ 174-175:445–454

    CAS  Google Scholar 

  • Wang Y, Zhang N, Chen D, Ma D, Liu G, Zou X, Chen Y, Shu R, Song Q, Lv W (2019b) Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. Sci Total Environ 682:118–127

    CAS  Google Scholar 

  • Wei N, Zheng X, Ou H, Yu P, Li Q, Feng S (2019) Fabrication of an amine-modified ZIF-8@GO membrane for high-efficiency adsorption of copper ions. New J Chem 43:5603–5610

    CAS  Google Scholar 

  • Wen M, Li G, Liu H, Chen J, An T, Yamashita H (2019) Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environ Sci Nano 6:1006–1025

    CAS  Google Scholar 

  • Wu D, Wang CC, Liu B, Liu D, Yang Q, Zhong C (2012) Large-scale computational screening of metal-organic frameworks for CH4/H2 separation. AICHE J 58:2078–2084

    CAS  Google Scholar 

  • Wu SC, You X, Yang C, Cheng JH (2017) Adsorption behavior of methyl orange onto an aluminum-based metal organic framework, MIL-68(Al). Water Sci Technol 75:2800–2810

    CAS  Google Scholar 

  • Wu J, Zhou J, Zhang S, Alsaedi A, Hayat T, Li J, Song Y (2019) Efficient removal of metal contaminants by EDTA modified MOF from aqueous solutions. J Colloid Interface Sci 555:403–412

    CAS  Google Scholar 

  • Xia W, Zou R, An L, Xia D, Guo S (2015) A metal–organic framework route to in situ encapsulation of Co@Co O @C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energ Environ Sci 8:568–576

    CAS  Google Scholar 

  • Xie L, Liu D, Huang H, Yang Q, Zhong C (2014) Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem Eng J 246:142–149

    CAS  Google Scholar 

  • Xiong Y, Gao Y, Guo X, Wang Y, Su X, Sun X (2019) Water-stable MOF material with uncoordinated terpyridine site for selective Th(IV)/Ln(III) separation. ACS Sustain Chem Eng 7:3120–3126

    CAS  Google Scholar 

  • Xu W, Li W, Lu L, Zhang W, Kang J, Li B (2019) Morphology-control of metal-organic framework crystal for effective removal of dyes from water. J Solid State Chem 279:120950

    CAS  Google Scholar 

  • Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378:703–706

    CAS  Google Scholar 

  • Yang M, Bai Q (2019) Flower-like hierarchical Ni-Zn MOF microspheres: efficient adsorbents for dye removal. Colloid Surface A 582:123795

    CAS  Google Scholar 

  • Yang DA, Cho HY, Kim J, Yang ST, Ahn WS (2012) CO capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energ Environ Sci 5:6465–6473

    CAS  Google Scholar 

  • Yang C, Yu L, Chen R, Cheng J, Chen Y, Hu Y (2017) Congo red adsorption on metal-organic frameworks, MIL-101 and ZIF-8: kinetics, isotherm and thermodynamic studies. Desalin Water Treat 94:211–221

    CAS  Google Scholar 

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    CAS  Google Scholar 

  • Yu LL, Cao W, Wu SC, Yang C, Cheng JH (2018) Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: preparation, characteristic, adsorption performance and mechanism. Ecotoxicol Environ Saf 164:289–296

    CAS  Google Scholar 

  • Yu D, Li L, Wu M, Crittenden JC (2019) Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl Catal B-Environ 251:66–75

    CAS  Google Scholar 

  • Yu XY, Feng Y, Guan B, Lou XW, Paik U (2016) Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energ Environ Sci 9:1246–1250

    CAS  Google Scholar 

  • Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993

    CAS  Google Scholar 

  • Zhang Y, Yu Q (2019) What is the best article publishing strategy for early career scientists? Scientometrics 122:397–408

    Google Scholar 

  • Zhang S, Mao G, Crittenden J, Liu X, Du H (2017a) Groundwater remediation from the past to the future: a bibliometric analysis. Water Res 119:114–125

    CAS  Google Scholar 

  • Zhang Y, Wang Y, Niu H (2017b) Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in China under future climate scenarios. Sci Total Environ 601-602:518–531

    CAS  Google Scholar 

  • Zhang Y, Zhang Y, Shi K, Yao X (2017c) Research development, current hotspots, and future directions of water research based on MODIS images: a critical review with a bibliometric analysis. Environ Sci Pollut Res 24:15226–15239

    CAS  Google Scholar 

  • Zhang H-Y, Yang C, Geng Q, Fan H-L, Wang B-J, Wu M-M, Tian Z (2019) Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): an experimental and simulation study. Appl Surf Sci 497:143815

    Google Scholar 

  • Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263

    CAS  Google Scholar 

  • Zhao D, Yuan D, Zhou HC (2008) The current status of hydrogen storage in metal–organic frameworks. Energ Environ Sci 1:222–235

    CAS  Google Scholar 

  • Zhi W, Yuan L, Ji G, Liu Y, Cai Z, Chen X (2015) A bibliometric review on carbon cycling research during 1993–2013. Environ Earth Sci 74:6065–6075

    Google Scholar 

  • Zhong M, Kong L, Li N, Liu YY, Zhu J, Bu XH (2019) Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordin Chem Rev 388:172–201

    CAS  Google Scholar 

  • Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512

    CAS  Google Scholar 

  • Zhu Y, Gupta KM, Liu Q, Jiang J, Caro J, Huang A (2016) Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 385:75–82

    CAS  Google Scholar 

  • Zuo J, Chung TS (2016) Metal–organic framework-functionalized alumina membranes for vacuum membrane distillation. Water 8:586–601

    Google Scholar 

Download references

Funding

This work was financially supported by the National Major Scientific and Technological Projects for Water Pollution Control and Management (2017ZX07402003), the China Postdoctoral Science Foundation (2019M650798), and the Central Public Welfare Scientific Research Project of Chinese Research Academy of Environmental Sciences (2016YSKY-027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zeng or Yajie Zhang.

Additional information

Responsible Editor: Tito Roberto Cadaval

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15.4 kb)

Fig. S1

(PNG 780 kb)

Fig S1

The distribution of the journal in respect to the total citations and number of articles. (TIF 6.96 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, L., Liu, Y. et al. The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis. Environ Sci Pollut Res 27, 19265–19284 (2020). https://doi.org/10.1007/s11356-020-08241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08241-1

Keywords

Navigation