Abstract
Essential oils are frequently used as natural fragrances in housecleaning products and air fresheners marketed as green and healthy. However, these substances are volatile and reactive chemical species. This review focuses on the impact of essential oil-based household products on indoor air quality. First, housecleaning products containing essential oils are explored in terms of composition and existing regulations. Specific insight is provided regarding terpenes in fragranced housecleaning products, air fresheners, and pure essential oils. Second, experimental methodologies for terpene monitoring, from sampling to experimental chambers and analytical methods, are addressed, emphasizing the experimental issues in monitoring terpenes in indoor air. Third, the temporal dynamics of terpene emissions reported in the literature are discussed. Despite experimental discrepancies, essential oil-based products are significant sources of terpenes in indoor air, inducing a high exposure of occupants to terpenes. Finally, the fate of terpenes is explored from sorptive and reactive points of view. In addition to terpene deposition on surfaces, indoor oxidants may induce homogeneous and heterogeneous reactions, resulting in secondary pollutants, such as formaldehyde and secondary organic aerosols. Overall, essential oil-based products can negatively impact indoor air quality; therefore, standard protocols and real-scale approaches are needed to explore the indoor physics and chemistry of terpenes, from emissions to reactivity.
This is a preview of subscription content, access via your institution.


References
Afnor Certification (2012) Règles générales de la marque NF environnement (in French)
ANSES (2017) Identification et analyse des différentes techniques d’épuration d’air intérieur émergentes. ANSES, France (in French)
Arey J, Atkinson R, Aschmann SM (1990) Product study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOx. J Geophys Res 95:18539–18546. https://doi.org/10.1029/jd095id11p18539
Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219. https://doi.org/10.1016/S1352-2310(03)00391-1
Babu KGD, Singh B, Joshi VP, Singh V (2002) Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragr J 17:136–140. https://doi.org/10.1002/ffj.1052
Bartzis J, Wolkoff P, Stranger M, Efthimiou G, Tolis EI, Maes F, Nørgaard AW, Ventura G, Kalimeri KK, Goelen E, Fernandes O (2015) On organic emissions testing from indoor consumer products’ use. J Hazard Mater 285:37–45. https://doi.org/10.1016/j.jhazmat.2014.11.024
Baughman AV, Gadgil AJ, Nazaroff WW (1994) Mixing of a point source pollutant by natural convection flow within a room. Indoor Air 4:114–122. https://doi.org/10.1111/j.1600-0668.1994.t01-2-00006.x
Bayrak A, Akgül A (1994) Volatile oil composition of Turkish rose (Rosa damascena). J Sci Food Agric 64:441–448. https://doi.org/10.1002/jsfa.2740640408
BEUC (2005) Emissions of chemicals by air fresheners. International Consumer Research & Testing, Belgium
Black MS, Worthan AW (1999) Emissions from office equipment. Proc Indoor Air 99:459–462
Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 15:2–12. https://doi.org/10.1111/j.1600-0668.2004.00263.x
Brelih N (2012) Ventilation rates and IAQ in national regulations. In: Federation of European heating, ventilation and air conditioning associations. REHVA, Brussels, pp 24–28
Brown SK (1999) Chamber assessment of formaldehyde and VOC emissions from wood-based panels. Indoor Air 9:209–215. https://doi.org/10.1111/j.1600-0668.1999.t01-1-00008.x
Brown SK, Sim MR, Abramson MJ, Gray CN (1994) Concentrations of volatile organic compounds in indoor air—a review. Indoor Air 4:123–134. https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x
Calogirou A, Larsen BR, Kotzias D (1999) Gas-phase terpene oxidation products: a review. Atmos Environ 33:1423–1439. https://doi.org/10.1016/s1352-2310(98)00277-5
Cano-Ruiz JA, Kong D, Balas RB, Nazaroff WW (1993) Removal of reactive gases at indoor surfaces: combining mass transport and surface kinetics. Atmos Environ Part A Gen Top 27:2039–2050. https://doi.org/10.1016/0960-1686(93)90276-5
Ceacero-Vega AA, Ballesteros B, Bejan I, Barnes I, Jiménez E, Albaladejo J (2012) Kinetics and mechanisms of the tropospheric reactions of menthol, borneol, fenchol, camphor, and fenchone with hydroxyl radicals (OH) and chlorine atoms (Cl). J Phys Chem A 116:4097–4107. https://doi.org/10.1021/jp212076g
Chesnais E, Marchais M (2014) Sprays assainissants et désodorisants - Notre intérieur dégradé. Que Choisir October 2014:53 (in French)
Chiu H-H, Chiang H-M, Lo C-C, Chen C-Y, Chiang H-L (2009) Constituents of volatile organic compounds of evaporating essential oil. Atmos Environ 43:5743–5749. https://doi.org/10.1016/j.atmosenv.2009.08.002
Colombo A, De Bortoli M, Knöppel H, Schauenburg H, Vissers H (1991) Small chamber tests and headspace analysis of volatile organic compounds emitted from household products. Indoor Air 1:13–21. https://doi.org/10.1111/j.1600-0668.1991.02-11.x
Danh LT, Triet NDA, Han LTN, Zhao J, Mammucari R, Foster N (2012) Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2. J Supercrit Fluids 70:27–34. https://doi.org/10.1016/j.supflu.2012.06.008
De la Santé M, Sociale dlP (2014) Décrets, arrêtés, circulaires: Arrêtés du 6 Février 2001. J Off Répub Fr (in French)
Delmas C, Weiler AS, Ortega S, Duong O, Dazy A, Ott M, Schneider C, Moritz R, Leclerc N, Rivière E, de Blay F (2016) Mesure de la concentration aérienne de COV terpéniques (dont le limonène) selon plusieurs procédures lors de pulvérisations d’un mélange d’huiles essentielles. Rev Française Allergol 56:357–363. https://doi.org/10.1016/j.reval.2016.02.005 (in French)
Destaillats H, Lunden MM, Singer BC, Coleman BK, Hodgson AT, Weschler CJ, Nazaroff WW (2006) Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study. Environ Sci Technol 40:4421–4428. https://doi.org/10.1021/es052198z
Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42:1371–1388. https://doi.org/10.1016/j.atmosenv.2007.10.080
Dimitroulopoulou C (2012) Ventilation in European dwellings: a review. Build Environ 47:109–125. https://doi.org/10.1016/j.buildenv.2011.07.016
Dimitroulopoulou C, Lucica E, Johnson A, Ashmore MR, Sakellaris I, Stranger M, Goelen E (2015a) EPHECT I: European household survey on domestic use of consumer products and development of worst-case scenarios for daily use. Sci Total Environ 536:880–889. https://doi.org/10.1016/j.scitotenv.2015.05.036
Dimitroulopoulou C, Trantallidi M, Carrer P, Efthimiou GC, Bartzis JG (2015b) EPHECT II: exposure assessment to household consumer products. Sci Total Environ 536:890–902. https://doi.org/10.1016/j.scitotenv.2015.05.138
Drescher AC, Lobascio C, Gadgil AJ, Nazarofif WW (1995) Mixing of a point-source indoor pollutant by forced convection. Indoor Air 5:204–214. https://doi.org/10.1111/j.1600-0668.1995.t01-1-00007.x
European Commission (2012) European regulation 528/2012 of the European parlament and of the council of 22 May 2012
European Union (2006) Regulation (EC) No 907/2006 of 20 June 2006, amending regulation (EC) No 648/2004 on detergents
Ezendam J, Biesebeek JDT, Wijnhoven SW (2009) The presence of fragrance allergens in scented consumer products. National Institute of Public Health and the Environment, Netherlands, Letter report 340301002/2009
Fan Z, Lioy P, Weschler C, Fiedler N, Kipen H, Zhang J (2003) Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Technol 37:1811–1821. https://doi.org/10.1021/es026231i
Fick J, Pommer L, Andersson B, Nilsson C (2002) A study of the gas-phase ozonolysis of terpenes: the impact of radicals formed during the reaction. Atmos Environ 36:3299–3308. https://doi.org/10.1016/s1352-2310(02)00291-1
Forester CD, Wells JR (2009) Yields of carbonyl products from gas-phase reactions of fragrance compounds with OH radical and ozone. Environ Sci Technol 43:3561–3568. https://doi.org/10.1021/es803465v
Forester CD, Wells JR (2011) Hydroxyl radical yields from reactions of terpene mixtures with ozone. Indoor Air 21:400–409. https://doi.org/10.1111/j.1600-0668.2011.00718.x
Forester CD, Ham JE, Wells JR (2006) Gas-phase chemistry of dihydromyrcenol with ozone and OH radical: rate constants and products. Int J Chem Kinet 38:451–463. https://doi.org/10.1002/kin.20174
Forester CD, Ham JE, Wells JR (2007) Geraniol (2,6-dimethyl-2,6-octadien-8-ol) reactions with ozone and OH radical: rate constants and gas-phase products. Atmos Environ 41:1188–1199. https://doi.org/10.1016/j.atmosenv.2006.09.042
Gómez AE, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (2012) Atmospheric photosensitized heterogeneous and multiphase reactions: from outdoors to indoors. Environ Sci Technol 46:1955–1963. https://doi.org/10.1021/es2019675
Grosjean D, Williams EL, Seinfeld JH (1992) Atmospheric oxidation of selected terpenes and related carbonyls: gas-phase carbonyl products. Environ Sci Technol 26:1526–1533. https://doi.org/10.1021/es00032a005
Grosjean D, Williams EL, Grosjean E, Andino JM, Seinfeld JH (1993) Atmospheric oxidation of biogenic hydrocarbons: reaction of ozone with .beta.-pinene, D-limonene and trans-caryophyllene. Environ Sci Technol 27:2754–2758. https://doi.org/10.1021/es00049a014
Groupe Ecocert (2017) Referentiel ecocert: ecodétergents et écodétergents à base d’ingrédients biologiques, Feb. 2017: 1–41 (in French)
Guo J-J, Gao Z-P, Xia J-L, Ritenour MA, Li G-Y, Shan Y (2018) Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China. LWT 97:825–839. https://doi.org/10.1016/j.lwt.2018.07.060
Haghighat F, De Bellis L (1998) Material emission rates: literature review, and the impact of indoor air temperature and relative humidity. Build Environ 33:261–277. https://doi.org/10.1016/s0360-1323(97)00060-7
Hakola H, Arey J, Aschmann SM, Atkinson R (1994) Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes. J Atmos Chem 18:75–102. https://doi.org/10.1007/bf00694375
Ham JE, Proper SP, Wells JR (2006) Gas-phase chemistry of citronellol with ozone and OH radical: rate constants and products. Atmos Environ 40:726–735. https://doi.org/10.1016/j.atmosenv.2005.10.004
Hammer KA, Carson CF, Riley TV, Nielsen JB (2006) A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol 44:616–625. https://doi.org/10.1016/j.fct.2005.09.001
Harb P, Sivachandiran L, Gaudion V, Thevenet F, Locoge N (2016) The 40 m 3 innovative experimental room for indoor air studies (IRINA): development and validations. Chem Eng J 306:568–578. https://doi.org/10.1016/j.cej.2016.07.102
Harb P, Locoge N, Thevenet F (2018) Emissions and treatment of VOCs emitted from wood-based construction materials: impact on indoor air quality. Chem Eng J 354:641–652. https://doi.org/10.1016/j.cej.2018.08.085
Harkat-Madouri L, Asma B, Madani K, Said ZBOS, Rigou P, Grenier D, Allalou H, Remini H, Adjaoud A, Boulekbache-Makhlouf L (2015) Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind Crop Prod 78:148–153. https://doi.org/10.1016/j.indcrop.2015.10.015
Harrison JC, Ham JE (2010) Rate constants for the gas-phase reactions of nitrate radicals with geraniol, citronellol, and dihydromyrcenol. Int J Chem Kinet 42:669–675. https://doi.org/10.1002/kin.20509
Höllbacher E, Rieder-Gradinger C, Strateva D, Srebotnik E (2014) A large-scale test set-up for measuring VOC emissions from wood products under laboratory conditions in simulated real rooms. Holzforschung 69:457
Höllbacher E, Ters T, Rieder-Gradinger C, Srebotnik E (2017) Emissions of indoor air pollutants from six user scenarios in a model room. Atmos Environ 150:389–394. https://doi.org/10.1016/j.atmosenv.2016.11.033
Horn W, Richter M, Nohr M, Wilke O, Jann O (2018) Application of a novel reference material in an international round robin test on material emissions testing. Indoor Air 28:181–187. https://doi.org/10.1111/ina.12421
Huang Y, Ho SSH, Ho KF, Lee SC, Gao Y, Cheng Y, Chan CS (2011) Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong. Atmos Environ 45:6191–6196. https://doi.org/10.1016/j.atmosenv.2011.08.012
Huang H-L, Tsai T-J, Hsu N-Y, Lee C-C, Wu P-C, Su H-J (2012) Effects of essential oils on the formation of formaldehyde and secondary organic aerosols in an aromatherapy environment. Build Environ 57:120–125. https://doi.org/10.1016/j.buildenv.2012.04.020
Jo W-K, Lee J-H, Kim M-K (2008) Head-space, small-chamber and in-vehicle tests for volatile organic compounds (VOCs) emitted from air fresheners for the Korean market. Chemosphere 70:1827–1834. https://doi.org/10.1016/j.chemosphere.2007.08.021
Johnson A, Lucica E (2012) Survey on indoor use and use patterns of consumer products in EU member states. EPHECT report
Jørgensen RB, Knudsen HN, Fanger PO (1993) The influence on indoor air quality of adsorption and desorption of organic compounds on materials. In: Proceedings of indoor air, Helsinki, pp 383–388
Jorgensen RB, Bjorseth O, Malvik B (1999) Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces. Indoor Air 9:2–9. https://doi.org/10.1111/j.1600-0668.1999.t01-3-00002.x
Kirchner S, Buchmann A, Cochet C, Dassonville C, Derbez M, Leers Y, Lucas J-P, Mandin C, Ouattara M, Ramalho O, Ribéron J (2001) Qualité d’air intérieur, qualité de vie. 10 ans de recherche pour mieux respirer (in French)
Klenø JG, Clausen PA, Weschler CJ, Wolkoff P (2001) Determination of ozone removal rates by selected building products using the FLEC emission cell. Environ Sci Technol 35:2548–2553. https://doi.org/10.1021/es000284n
Knudsen HN, Nielsen PA, Clausen PA, Wilkins CK, Wolkoff P (2003) Sensory evaluation of emissions from selected building products exposed to ozone. Indoor Air 13:223–231. https://doi.org/10.1034/j.1600-0668.2003.00182.x
Koistinen K, Kotzias D, Kephalopoulos S, Schlitt C, Carrer P, Jantunen M, Kirchner S, McLaughlin J, Mølhave L, Fernandes EO, Seifert B (2008) The INDEX project: executive summary of a European Union project on indoor air pollutants. Allergy 63:810–819. https://doi.org/10.1111/j.1398-9995.2008.01740.x
Koukos PK, Papadopoulou KI, Patiaka DT, Papagiannopoulos AD (2000) Chemical composition of essential oils from needles and twigs of Balkan pine (Pinus peuce Grisebach) grown in northern Greece. J Agric Food Chem 48:1266–1268. https://doi.org/10.1021/jf991012a
Kwon K-D, Jo W-K, Lim H-J, Jeong W-S (2007) Characterization of emissions composition for selected household products available in Korea. J Hazard Mater 148:192–198. https://doi.org/10.1016/j.jhazmat.2007.02.025
Kwon K-D, Jo W-K, Lim H-J, Jeong W-S (2008) Volatile pollutants emitted from selected liquid household products. Environ Sci Pollut Res 15:521–526. https://doi.org/10.1007/s11356-008-0028-x
Lai ACK, Thatcher TL, Nazaroff WW (2000) Inhalation transfer factors for air pollution health risk assessment. J Air Waste Manage Assoc 50:1688–1699. https://doi.org/10.1080/10473289.2000.10464196
Larbre J, Boudet C, Grammont V, Mevel H, Bureau J (2011) En vue de l’étiquetage des produits de grande consommation. Classement en fonction des expositions dans l’air intérieur. INERIS, France (in French)
Lassen C, Havelund S, Mikkelsen S (2008) Health assessment of chemical substances in essential oils and fragrance oils. Danish Environmental Protection Agency (DEPA), Denmark
Lee K, Vallarino J, Dumyahn T, Ozkaynak H, Spengler JD (1999) Ozone decay rates in residences. J Air Waste Manage Assoc 49:1238–1244. https://doi.org/10.1080/10473289.1999.10463913
Lee A, Goldstein AH, Keywood MD, Gao S, Varutbangkul V, Bahreini R, Ng NL, Flagan RC, Seinfeld JH (2006) Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J Geophys Res 111:D07302. https://doi.org/10.1029/2005jd006437
Lehuede F (2009) Les Français et les risques sanitaires associés aux produits ménagers et de soin du corp. ECOVER - CREDOC, Paris (in French)
Liu X, Mason M, Krebs K, Sparks L (2004) Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone. Environ Sci Technol 38:2802–2812. https://doi.org/10.1021/es030544b
Long CM, Suh HH, Koutrakis P (2000) Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manage Assoc 50:1236–1250. https://doi.org/10.1080/10473289.2000.10464154
Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP (2016) Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod 79:274–282. https://doi.org/10.1016/j.indcrop.2015.10.055
Magnano M, Silvani S, Vincenzi C, Nino M, Tosti A (2009) Contact allergens and irritants in household washing and cleaning products. Contact Dermat 61:337–341. https://doi.org/10.1111/j.1600-0536.2009.01647.x
Marlet C, Lognay G (2011) Les monoterpènes : sources et implications dans la qualité de l’air intérieur. Biotechnol Agron Soc Environ 15:611–622 (in French)
Meininghaus R, Salthammer T, Knöppel H (1999) Interaction of volatile organic compounds with indoor materials—a small-scale screening method. Atmos Environ 33:2395–2401. https://doi.org/10.1016/s1352-2310(98)00367-7
Missia D, Kopanidis T, Bartzis J, Silva GV, Fernandes EDO, Carrer PW, Stranger M, Goelen E (2012) Literature review on, product composition, emitted compounds, emission rate and health end points from consumer products . Executive Agency for Health and Consumers- EAHC, European Union, Final Report European Project EPHECT, Kozani
Nazaroff WW, Board CAR, University of California BDOC, Engineering E, Division LBNLEET (2006) Indoor air chemistry: cleaning agents, ozone, and toxic air contaminants. California Environmental Protection Agency, Air Resources Board, Research Division, Berkeley
Nazaroff WW, Weschler CJ (2004) Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos Environ 38:2841–2865. https://doi.org/10.1016/j.atmosenv.2004.02.040
Nicolas M (2006) Ozone et qualité de l’air intérieur : interactions avec les produits de construction et de décoration. Thèse, Université Paris (in French)
Nicolas M, Chiappini L (2013) Household products using and indoor air quality: emissions, reactivity and by-products. Centre Scientifique et technique du Bâtiment (CSTB), INERIS, France
Nicolas M, Ramalho O, Maupetit F (2007) Reactions between ozone and building products: impact on primary and secondary emissions. Atmos Environ 41:3129–3138. https://doi.org/10.1016/j.atmosenv.2006.06.062
Nørgaard AW, Kudal JD, Kofoed-Sørensen V, Koponen IK, Wolkoff P (2014) Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. Environ Int 68:209–218. https://doi.org/10.1016/j.envint.2014.03.029
Palmisani J, Norgaard AW, Kofoed-Sørensen V, Clausen PA, Gennaro GD, Wolkoff P (2017) Evaluation of ozone-initiated VOC and particle emissions from a carpet deodorizer. Healthy Build:ID 0044
Pibiri M, Goel A, Vahekeni N, Roulet C (2006) Indoor air purification and ventilation systems sanitation with essential oils. Int J Aromather 16:149–153. https://doi.org/10.1016/j.ijat.2006.10.002
Pommer L (2003) Oxidation of terpenes in indoor environments: a study of influencing factors. PhD thesis, Umea University
Pors J, Fuhlendorff R (2003) Mapping of chemical substances in air fresheners and other fragrance liberating products. Danish Environmental Protection Agency (DEPA), Denmark
Preksha V (2018) Essential oil market by product (orange, eucalyptus, corn mint, peppermint, citronella, lemon, lime, clover leaf, spearmint, and others), and application (food & beverages, medical, cleaning & home, spa & relaxation, and others)—global opportunity analysis and industry forecast, 2015–2022. Market Research Report 978-1-68038-549–6
Rastogi SC (2002) Contents of selected fragrance materials in cleaning products and other consumer products. Danish Environmental Protection Agency (DEPA), Denmark
Rastogi SC, Heydorn S, Johansen JD, Basketter DA (2001) Fragrance chemicals in domestic and occupational products. Contact Dermat 45:221–225. https://doi.org/10.1034/j.1600-0536.2001.450406.x
Reissell A, Aschmann SM, Atkinson R, Arey J (2002) Products of the OH radical- and O3-initiated reactions of myrcene and ocimene. J Geophys Res Atmos 107:ACH 3-1–ACH 3-6. https://doi.org/10.1029/2001JD001234
Rossignol S, Rio C, Ustache A, Fable S, Nicolle J, Même A, D’Anna B, Nicolas M, Leoz E, Chiappini L (2013) The use of a housecleaning product in an indoor environment leading to oxygenated polar compounds and SOA formation: gas and particulate phase chemical characterization. Atmos Environ 75:196–205. https://doi.org/10.1016/j.atmosenv.2013.03.045
Said ZBOS, Haddadi-Guemghar H, Boulekbache-Makhlouf L, Rigou P, Remini H, Adjaoud A, Khoudja NK, Madani K (2016) Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind Crop Prod 89:167–175. https://doi.org/10.1016/j.indcrop.2016.05.018
Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765. https://doi.org/10.1016/j.envint.2011.01.005
Sarwar G, Corsi R, Kimura Y, Allen D, Weschler CJ (2002) Hydroxyl radicals in indoor environments. Atmos Environ 36:3973–3988. https://doi.org/10.1016/s1352-2310(02)00278-9
Sarwar G, Olson DA, Corsi RL, Weschler CJ (2004) Indoor fine particles: the role of terpene emissions from consumer products. J Air Waste Manage Assoc 54:367–377. https://doi.org/10.1080/10473289.2004.10470910
Sell CS (2003) A fragrant introduction to terpenoids chemistry. The Royal Science of Chemistry, United Kingdom
Shi S (2011) Ozone and terpene reactions on indoor surfaces: reaction rates and implications for indoor air quality. PhD thesis, Missouri University of Science and Technology
Shu S, Morrison GC (2011) Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces. Environ Sci Technol 45:4285–4292. https://doi.org/10.1021/es200194e
Singer BC, Revzan KL, Hotchi T, Hodgson AT, Brown NJ (2004) Sorption of organic gases in a furnished room. Atmos Environ 38:2483–2494. https://doi.org/10.1016/j.atmosenv.2004.02.003
Singer BC, Coleman BK, Destaillats H, Hodgson AT, Lunden MM, Weschler CJ, Nazaroff WW (2006a) Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone. Atmos Environ 40:6696–6710. https://doi.org/10.1016/j.atmosenv.2006.06.005
Singer BC, Destaillats H, Hodgson AT, Nazaroff WW (2006b) Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air 16:179–191. https://doi.org/10.1111/j.1600-0668.2005.00414.x
Solal C, Rousselle C, Mandin C, Manel J, Maupetit F (2014) VOC’s and formaldehyde emissions from cleaning products and air freshener. In: Proceedings of the International conference on indoor air quality and climate (indoor air 2008), Copenhagen
Springs M, Wells JR, Morrison GC (2011) Reaction rates of ozone and terpenes adsorbed to model indoor surfaces. Indoor Air 21:319–327. https://doi.org/10.1111/j.1600-0668.2010.00707.x
Steinemann AC (2009) Fragranced consumer products and undisclosed ingredients. Environ Impact Assess Rev 29:32–38. https://doi.org/10.1016/j.eiar.2008.05.002
Steinemann A (2015) Volatile emissions from common consumer products. Air Qual Atmos Health 8:273–281. https://doi.org/10.1007/s11869-015-0327-6
Steinemann A (2016) Fragranced consumer products: exposures and effects from emissions. Air Qual Atmos Health 9:861–866. https://doi.org/10.1007/s11869-016-0442-z
Steinemann AC, MacGregor IC, Gordon SM, Gallagher LG, Davis AL, Ribeiro DS, Wallace LA (2011) Fragranced consumer products: chemicals emitted, ingredients unlisted. Environ Impact Assess Rev 31:328–333. https://doi.org/10.1016/j.eiar.2010.08.002
Stokes GY, Buchbinder AM, Gibbs-Davis JM, Scheidt KA, Geiger FM (2008) Heterogeneous ozone oxidation reactions of 1-pentene, cyclopentene, cyclohexene, and a menthenol derivative studied by sum frequency generation. J Phys Chem A 112:11688–11698. https://doi.org/10.1021/jp803277s
Stokes GY, Chen EH, Walter SR, Geiger FM (2009) Two reactivity modes in the heterogeneous cyclohexene ozonolysis under tropospherically relevant ozone-rich and ozone-limited conditions. J Phys Chem A 113:8985–8993. https://doi.org/10.1021/jp904104s
Stranger M, Maes F, Goelen E, Nørgaard A, Wolkoff P, Ventura G, Fernandes EDO, Tolis EI, Bartzis J (2012) Quantification of the product emissions by laboratory testing WP6 part I consumer product test protocol. Executive Agency for Health and Consumers- EAHC), European Union, Final Report European Project
Stranger M, Maes F, Goelen E, Nørgaard A, Wolkoff P, Ventura G, Fernandes EDO, Tolis EI, Efthimiou G, Kalimeri K, Bartzis J, Letzel T (2013) Quantification of the product emissions by laboratory testing WP6 part II results of product testing experiments. Executive Agency for Health and Consumers- EAHC), European Union, Final Report
Su H-J, Chao C-J, Chang H-Y, Wu P-C (2007) The effects of evaporating essential oils on indoor air quality. Atmos Environ 41:1230–1236. https://doi.org/10.1016/j.atmosenv.2006.09.044
Tardieux P, Vigan M, Bossé I (2012) AC: allergènes contrôlés: référentiel produits détergents. In: ARCAA Assoc Rech Clin En Allergol Asthmologie, pp 1–11
Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crop Prod 43:587–595. https://doi.org/10.1016/j.indcrop.2012.07.069
Thevenet F, Debono O, Rizk M, Caron F, Verriele M, Locoge N (2018) VOC uptakes on gypsum boards: sorption performances and impact on indoor air quality. Build Environ 137:138–146. https://doi.org/10.1016/j.buildenv.2018.04.011
Toftum J, Freund S, Salthammer T, Weschler CJ (2008) Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a “green” paint. Atmos Environ 42:7632–7640. https://doi.org/10.1016/j.atmosenv.2008.05.071
Topp C, Nielsen PV, Heiselberg P (2001) Influence of local airflow on the pollutant emission from indoor building surfaces. Indoor Air 11:162–170. https://doi.org/10.1034/j.1600-0668.2001.011003162.x
Trantallidi M, Dimitroulopoulou C, Wolkoff P, Kephalopoulos S, Carrer P (2015) EPHECT III: health risk assessment of exposure to household consumer products. Sci Total Environ 536:903–913. https://doi.org/10.1016/j.scitotenv.2015.05.123
Uhde E, Schulz N (2015) Impact of room fragrance products on indoor air quality. Atmos Environ 106:492–502. https://doi.org/10.1016/j.atmosenv.2014.11.020
Weegels MF, van Veen MP (2001) Variation of consumer contact with household products: a preliminary investigation. Risk Anal 21:499–512. https://doi.org/10.1111/0272-4332.213128
Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10:269–288. https://doi.org/10.1034/j.1600-0668.2000.010004269.x
Weschler CJ (2001) Reactions among indoor pollutants. Sci World J 1:443–457. https://doi.org/10.1100/tsw.2001.75
Weschler CJ (2004) Chemical reactions among indoor pollutants: what we’ve learned in the new millennium. Indoor Air 14:184–194. https://doi.org/10.1111/j.1600-0668.2004.00287.x
Weschler CJ, Shields HC (1996) Production of the hydroxyl radical in indoor air. Environ Sci Technol 30:3250–3258. https://doi.org/10.1021/es960032f
Weschler CJ, Shields HC (1997a) Measurements of the hydroxyl radical in a manipulated but realistic indoor environment. Environ Sci Technol 31:3719–3722. https://doi.org/10.1021/es970669e
Weschler CJ, Shields HC (1997b) Potential reactions among indoor pollutants. Atmos Environ 31:3487–3495. https://doi.org/10.1016/s1352-2310(97)00219-7
Weschler CJ, Shields HC (1999) Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 33:2301–2312. https://doi.org/10.1016/s1352-2310(99)00083-7
Weschler CJ, Brauer M, Koutrakis P (1992) Indoor ozone and nitrogen dioxide: a potential pathway to the generation of nitrate radicals, dinitrogen pentoxide, and nitric acid indoors. Environ Sci Technol 26:179–184. https://doi.org/10.1021/es00025a022
Wolkoff P, Nielsen GD (2017) Effects by inhalation of abundant fragrances in indoor air—an overview. Environ Int 101:96–107. https://doi.org/10.1016/j.envint.2017.01.013
Wolkoff P, Clausen PA, Jensen B, Nielsen GD, Wilkins CK (1997) Are we measuring the relevant indoor pollutants? Indoor Air 7:92–106. https://doi.org/10.1111/j.1600-0668.1997.t01-2-00003.x
Wolkoff P, Schneider T, Kildesø J, Degerth R, Jaroszewski M, Schunk H (1998) Risk in cleaning: chemical and physical exposure. Sci Total Environ 215:135–156. https://doi.org/10.1016/s0048-9697(98)00110-7
World Health Organization (2010) “WHO guidelines for indoor air quality,” European Comission World Health Organization, Final Report. WHO, Geneva, Switzerland
Yrieix C, Dulaurent A, Laffargue C, Maupetit F, Pacary T, Uhde E (2010) Characterization of VOC and formaldehyde emissions from a wood based panel: results from an inter-laboratory comparison. Chemosphere 79:414–419. https://doi.org/10.1016/j.chemosphere.2010.01.062
Yu J, Cocker Iii DR, Griffin RJ, Flagan RC, Seinfeld JH (1999) Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J Atmos Chem 34:207–258. https://doi.org/10.1023/a:1006254930583
Zuzarte M, Salgueiro L (2015) Essential oils chemistry. In: Sousa DPD (ed) Bioactive essential oils and cancer. Springer, Cham, pp 19–61
Funding
This work is developed in the frame of the project ESSENTIEL, which has received financial support from the ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Responsible editor: Philippe Garrigues
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Angulo Milhem, S., Verriele, M., Nicolas, M. et al. Does the ubiquitous use of essential oil-based products promote indoor air quality? A critical literature review. Environ Sci Pollut Res 27, 14365–14411 (2020). https://doi.org/10.1007/s11356-020-08150-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-020-08150-3
Keywords
- Indoor air
- Essential oils
- Terpenes
- Cleaning products
- Air fresheners
- Emission
- Reactivity