Skip to main content

Spent mushroom substrate combined with alkaline amendment passivates cadmium and improves soil property


As an extremely toxic metal, cadmium (Cd) is readily taken up by most plants. In situ Cd passivation is of great importance to reduce Cd availability in soil. In this experiment, two alkaline amendments, lime (L) (at a dosage of 0.02%, 0.04%, or 0.08%) and biochar (B) (at a dosage of 0.5%, 1%, or 2%), were used to improve Cd passivation by spent mushroom substrate (SMS) in a simulating Cd-contaminated soil (0.6 mg kg−1). Results showed that the application of SMS alone reduced Cd bioavailability by 44.80% and EC by 9.71% and increased soil pH by 0.61 units, CEC by 25.32%, and soil enzymes activities by 17.11% to 21.10% compared with non-amendment Cd-contaminated soil. Biochar combination enhanced the efficiency of SMS on Cd reduction by 48.32–66.58% and pH increased by 0.17 to 0.59 units and enzymes activities elevation by 5.74% to 47.29% in a dose-dependent manner. Lime also facilitated SMS to passivate Cd by decreasing bioavailable Cd by 63.10%–66.47% and increasing soil pH by 0.25–0.72 units and enzymes activities by 3.28% to 37.86% compared to those of SMS. Among six combined amendments, SMSB3 (0.5% SMS + 2% B) performed best in reducing bioavailable Cd (39.46% higher than SMS), increasing organic matter content (28.54% higher than SMS) and soil enzyme activities (25.82%, 47.29%, and 26.23% higher than that of SMS for catalase, urease, and invertase, respectively). Both biochar and lime can assist SMS to passivate Cd and improve soil property, and biochar is more efficient than lime in reducing cadmium content and increasing enzyme activity and organic matter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


Download references


This research was financially supported by the National Key Research Project of China (Grant no.: 2017YFD0801104).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Juanjuan Qu or Yu Jin.

Additional information

Responsible editor: Zhihong Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Zhang, M., Li, R. et al. Spent mushroom substrate combined with alkaline amendment passivates cadmium and improves soil property. Environ Sci Pollut Res 27, 16317–16325 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: