Skip to main content

Influence of addition of organic fillers on the properties of mechanically recycled PLA

Abstract

Poly(lactic acid) (PLA) is one of the most used biobased and biodegradable polymers. Due to their high stability, some of the newest grades of PLA are only degradable under severe industrial conditions. For these grades, mechanical recycling is a viable end-of-life option, with great environmental advantages. However, the polymer undergoes degradation during its service life and in the melt reprocessing, which leads to a decrease in properties that can compromise the recyclability of PLA. The goal of this work was to evaluate the usefulness of adding small amounts of two organic fillers, chitosan, and silk fibroin nanoparticles, during the recycling process for improving the properties of the recycled plastic. The degradation level of the aged polymer and the nature and amount of filler affect the performance of the recycled plastics. The fillers reduce the degradation during the melt reprocessing of PLA previously subjected to severe hydrolysis, thus increasing the intrinsic viscosity of the recycled plastic. A careful selection of the added organic filler lead to recycled plastics with improvements in some key mechanical, thermal, and barrier properties. Thus, the use of organic fillers represents a cost-effective and environmentally sound way for improving the mechanical recycling of bioplastics.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

PLA:

Poly(lactic acid)

SFN:

Silk fibroin nanoparticles

SF:

Silk fibroin

SEM:

Scanning electron microscopy

DSC:

Differential scanning calorimetry

TGA:

Thermogravimetric analysis

WVTR:

Water vapor transmission rate

HSFN:

Silk fibroin nanoparticles obtained by acid hydrolysis

DSFN:

Silk fibroin nanoparticles obtained by desolvation

FTIR:

Fourier-transform infrared

ATR:

Attenuated total reflectance

T g :

Glass transition temperature

T cc :

Cold crystallization temperature

T m :

Melting temperature

ΔH cc :

Cold crystallization enthalpy

ΔH m :

Melting enthalpy

X c :

Crystallinity degree

T 10 :

Temperature at which 10% of the mass

T max :

temperature of maximum degradation rate

References

  1. Ajisawa A (1998) Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution; studies on the dissolution of silk fibroin. (IX). J Sericult Sci Jpn 67:91–94

    CAS  Google Scholar 

  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    CAS  Article  Google Scholar 

  3. Auras R, Lim L, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  4. Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polym Degrad Stab 133:339–348

    Article  Google Scholar 

  5. Beltrán FR, Ortega E, Solvoll AM, Lorenzo V, de la Orden MU, Martínez Urreaga J (2018a) Effects of aging and different mechanical recycling processes on the structure and properties of poly(lactic acid)-clay nanocomposites. J Polym Environ 26:2142–2152

    Article  Google Scholar 

  6. Beltrán FR, Lorenzo V, Acosta J, de la Orden MU, Martínez Urreaga J (2018b) Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). J Environ Manag 216:25–31

    Article  Google Scholar 

  7. Beltrán FR, de la Orden MU, Martínez Urreaga J (2018c) Amino-modified halloysite nanotubes to reduce polymer degradation and improve the performance of mechanically recycled poly(lactic acid). J Polym Environ 26:4046–4055

    Article  Google Scholar 

  8. Beltrán FR, Infante C, de la Orden MU, Martínez Urreaga J (2019) Mechanical recycling of poly(lactic acid): evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J Clean Prod 219:46–56. https://doi.org/10.1016/j.jclepro.2019.01.206

    CAS  Article  Google Scholar 

  9. Bonilla J, Fortunati E, Vargas M, Chiralt A, Kenny JM (2013) Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119:236–243

    CAS  Article  Google Scholar 

  10. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    CAS  Article  Google Scholar 

  11. Cecchi T, Giuliani A, Iacopini F, Santulli C, Sarasini F, Tirillà J (2019) Unprecedented high percentage of food waste powder filler in poly lactic acid green composites: synthesis, characterization, and volatile profile. Environ Sci Pollut Res 26:7263–7271

    CAS  Article  Google Scholar 

  12. Chinthapalli R, Skoczinski P, Carus M, Baltus W, de Guzman D, Käb H, Raschka A, Ravenstijn J (2019) Bio-based building blocks and polymers – global capacities, production and trends 2018–2023. nova-Institut GmbH, Germany

    Google Scholar 

  13. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984

    CAS  Article  Google Scholar 

  14. Cuadri AA, Martín-Alfonso JE (2018) Thermal, thermo-oxidative and thermomechanical degradation of PLA: a comparative study based on rheological, chemical and thermal properties. Polym Degrad Stab 150:37–45

    CAS  Article  Google Scholar 

  15. Di Lorenzo ML (2006) Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J Appl Polym Sci 100:3145–3151

    Article  Google Scholar 

  16. Elsawy MA, Saad GR, Sayed AM (2016) Mechanical, thermal, and dielectric properties of poly(lactic acid)/chitosan nanocomposites. Polym Eng Sci 56:987–994

    CAS  Article  Google Scholar 

  17. Elsawy MA, Kim K, Park J, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352

    CAS  Article  Google Scholar 

  18. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 107:367–392

    CAS  Article  Google Scholar 

  19. Haider T, Völker C, Kramm J, Landfester K, Wurm FR (2018) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed. https://doi.org/10.1002/anie.201805766

  20. Hijazi N, Le Moigne N, Rodier E, Sauceau M, Vincent T, Benezet J, Fages J (2019) Biocomposite films based on poly(lactic acid) and chitosan nanoparticles: elaboration, microstructural and thermal characterization. Polym Eng Sci 59:E350–E360

    CAS  Article  Google Scholar 

  21. Li W, Sun Q, Mu B, Luo G, Xu H, Yang Y (2019) Poly(l-lactic acid) bio-composites reinforced by oligo(d-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int J Biol Macromol 131:495–504

    CAS  Article  Google Scholar 

  22. Lozano-Pérez AA, Rivero HC, Pérez Hernández MDC, Pagán A, Montalbán MG, Víllora G, Cénis JL (2017) Silk fibroin nanoparticles: efficient vehicles for the natural antioxidant quercetin. Int J Pharm 518:11–19

    Article  Google Scholar 

  23. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214:159–174

    Article  Google Scholar 

  24. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916

    CAS  Article  Google Scholar 

  25. Niaounakis M (2019) Recycling of biopolymers – the patent perspective. Eur Polym J 114:464–475

    CAS  Article  Google Scholar 

  26. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531. https://doi.org/10.1126/science.1188936

    CAS  Article  Google Scholar 

  27. Patwa R, Kumar A, Katiyar V (2018) Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. J Appl Polym Sci 135:46671

    Article  Google Scholar 

  28. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    CAS  Article  Google Scholar 

  29. Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J Clean Prod 86:132–145

    Article  Google Scholar 

  30. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49:2839–2858

    CAS  Article  Google Scholar 

  31. Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6

    CAS  Article  Google Scholar 

  32. Tao Y, Xu W, Yan Y, Cao Y (2012) Preparation and characterization of silk fibroin nanocrystals. Polym Int 61:760–767

    CAS  Article  Google Scholar 

  33. Tesfaye M, Patwa R, Gupta A, Kashyap MJ, Katiyar V (2017) Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology. Int J Biol Macromol 101:580–594

    CAS  Article  Google Scholar 

  34. Zhao P, Rao C, Gu F, Sharmin N, Fu J (2018) Close-looped recycling of polylactic acid used in 3D printing: an experimental investigation and life cycle assessment. J Clean Prod 197:1046–1055

    CAS  Article  Google Scholar 

  35. Zhou C, Confalonieri F, Jacquet M, Perasso R, Li Z, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Institute of Polymer Science and Technology (Madrid, Spain), for collaborating in the SEM measurements.

Funding

This work was supported by MINECO-Spain (project CTM2017-88989-P), Universidad Politécnica de Madrid (project UPM RP 160543006), and the European Commission (Horizon 2020, project 860407-BIO-PLASTICS EUROPE). Dr. Lozano-Pérez’s research contract at IMIDA was partially supported (80%) by the ERDF/FEDER Operational Programme “Murcia” CCI N° 2007ES161PO001 (Project No. 14-20/20).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joaquín M. Martínez Urreaga.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beltrán, F.R., Gaspar, G., Dadras Chomachayi, M. et al. Influence of addition of organic fillers on the properties of mechanically recycled PLA. Environ Sci Pollut Res 28, 24291–24304 (2021). https://doi.org/10.1007/s11356-020-08025-7

Download citation

Keywords

  • Poly(lactic acid)
  • Mechanical recycling
  • Silk fibroin nanoparticle
  • Chitosan
  • Gas barrier properties
  • Mechanical properties
  • Thermal properties